the

AARDVARK JOURNAL

june 1981 vol2, no.2

IN THIS ISSUE

Lots in issue. Am cramped for space.
Complete Adventure, Article on how to
write same. (1/2 article. Rest of
magic stuff next month.) Articles on D &
N Micro boards, Mittendorf High Res
board, Final solution to Ouick printer
II problem, lots of letters, discussion
of adding a disk.

Two nice programs by John Wilson. We
just made available his BRerZerker
program ($9.935) and he made us nice gift
of two programs for Journal.

Fompea sent neat article to fiwu 65D
file access. Got article on reverse
video. This issue gonna cost AARDVARK a
bundle in gift certificates.

Adventure Work Sheet

ROOH N S
! RADIO RoOMH (Qng
;;;P?R_/ast @ _g_
KAL)
ESIOE | @ | @

ON
(6 FA/B3nZS DEX | & | 7]

o[o
CHIENESC0EEESERC0EE
ele[o[o[8]e[s{5[s]c]ekelelefe[o]0]e] ¢

[918[13 [0 [8[¢{o[of6] o6l elofoe] c
LJ3JA0CERRCECRLERE

D |

=/
/2 HALL JRYy) %
73 DOCTOR'S CABIM @ | @
14 CAPTAIN'S € Q @D
/5 B/ GE D
7% ANCHOEZ i
/7 BRIG D _{;
(78 SWiINgG Fool| & |

ADVENTURE WRITING

There 1is no kind of computing that
I enjoy more than either playing or
wi-iting ADVENTURES. These come closest
of any programs currently available to
matching my pre-computing-
days—-mythological-picture of what a
camputer should do. When vyou are
playing an ADVENTURE the darn machine
seems to speak English. Instead of
inputing "1" to go up and "2" to go
down, you just tell the computer "GO UP"
and it does it. It even talks back to
you in English.

It also turns your little 8K desk
top computer into a do-it-yourself build
a world kit. The nice thing about the
warld that vyou build is that you can
walk through it and pick up things, drop
things, look at things and try things.
You can build a place to fly spaceships,
slay dragons, or climb mountains.

There are, of couwrse, some slight
problems inherent in getting a little
bitty computer that speaks in numbers
and has an 1.0. of effectively zero to
do all of that. Take heart, however,
while it took a long time to come up
with techniques that will allow that to
be done efficiently, it is like
balancing an egg on end. It’s only hard
until you see how it’s done.

To demonstrate the techniques, we're
going to include a listing of DEATH SHIF
in this JOURNAL. DEATH SHIF was the
first ADVENTURE that I wrote and I make
no pretentions that it is up to the
standards we currently program at. It
is a somewhat limited ADVENTURE a little
less sophisticated than what we now do.
It i however kind of fun and it does
show all of the techniques that make a
computer look so bright.

We are going to have a little
problem discussing those techniques.
It’s one of those subjects where no
matter what we cover first, there is
something else that should have been

covered before we could cover that, so
bear with us a little. It may take a
couple readings of this article to get
it all straight.

The first thing I was concerned
with in writing an ADVENTURE was to get

the thing to speak English, or at least
look like it spoke English. I did it by
setting up two strings. If you look at
the DEATH SHIF listing, line 290 gives
you W$ which is the first two letters of
each of the verbs that the system
understands. Actually, Ws is GO + TAKE
+ DROF + TIE + REFLACE + OPEN + LOOK,
and so on. We also have a string which
contains the first two characters of
each of the object words which the
computer will understand. That’s 0%
which appears in line 700-710. The
first twelve letters in 0% for instance
stand for NORTH, SO0UTH, EAST, WEST, UF
and DOWN as those are six of the most
common object words that the computer
will have to cope with.

Now we have, in effect, two lists
aof words. One list of verbs and one
list of all the objects. All we have to
do is to input a string and figure out
which of these words the player is
using. We do put one constraint on the

player. He has to use the normal
English syntax for a command - verb
first and then the object. In DEATH
SHIF, we use the subroutine from 1730
to 1760 to input a string from the
player and separate out the first two

first word and the first
two letters of the last word. We do
that by looking for the last blank in
the sentence being input and then taking
the first two letters after the last
blank (A%). For the first word we take
the first two letters of the sentence as
a whole. (B$)

letters of the

The next important thing is to turn
these groups of letters into numbers so
we know what number verb and what number
object we are talking about. We use the
subroutine from 240 - 280 in DEATH SHIP
to do that. All it does is to take A%
(the first two letters of the first
word) and go through the string holding
the first two letters of each of the
verbs until it finds a match. When it
finds one, it then picks up the number
of the matched verb and goes to line 260
which does the same thing for the string
holding the names of all the

objects. (0%)

The only constraint on this system
is that you are limited to having verbs
and objects which do not share the
first two letters of their names. For

instance, you could not have a "CANDLE"
and a "CAN" in the same adventure. While

we used only two letters per word, vou
can decode more and get a wider range of
vocabulary. However the more letters you

decode, the slower the program will
run.

At this point in the ADVENTURE, we
have a number F which is the number of
the verb and a number designated S which
is the number of the object. Now we can
start branching out and doing some
things. The real secret to speed in the
adventure is the ON-GOTO statement in
line 300. Once we have F we can use the
ON-GBGOTO to branch to individual
subroutines to service each verb. F
Line 300 contains one GOTO routine for
each one of the verbs the system
understands.

Now we have the English decoded
into numbers, we need to take a step
back and decide what we are going to
decode. We have to design a universe
and decide on some objects that we are
going to put into it. We also have to
design it in terms of being able to move
around easily in it. To design the
universe, the first thing we have to do
is to draw a map. I won’t include a map
of DEATH SHIF here because of space
limitations, but suffice it to say that
when you go through it each location on
the ship connects to each other location
in one of six directions (NORTH, SOUTH,
EAST, WEST, UF and DOWN). Among

ADVENTURE programmers, each descreet
location is usually referred to as a
"room". That doesn™t change the fact

that it can be anything from a mountain
top to a closet. I have included an
example of an adventure worksheet such
as we use during the writing operation.
The first thing we do is to go through
the map and name all locations and make
up a numbered list of each location in
the adventure. In DEATH SHIF there are
a total of 18 descreet locations. Now
we have to make a map of this whole
thing that the computer can read.
That’s what the six columns on the right
hand side of the worksheet are for.
They are labeled the six directions (N,
S, E, W, U, and D). What they contain
is the number of the room that is in
that direction from the room in that
FOW. For instance, from the radio room
which is location number 1, the first
five directions are zeros because there
are no rooms either north, south, east,
west, or up, but the 6th element (down)
is a 7 because room number 7 (the aft
deck) is #7), you will note that it
shows a 1 in the UFP column because the

radio room (#1) is "up" from the aft
deck. It also shows a & in the first
column because the midships deck is

"morth" from the aft deck. In that

fashion, we go though the entire map and
list in each column what room, if any,
is in each direction from the room on
that row. Once it is set up, it is easy
to look at any location and see where
you can go from there. For instance,
look at the midship®s deck entry (Row
#6). From the midship’s deck, room #5
is north, room #7 is south, room #2 is
up room #12 is down and there are no
rooms to the east and west. This can be
read intoc the computer in an Nxé& array,
N being the number of rooms, and & being
. the directions that can lead off that
room. This is actually done in lines
760 - 800 in DEATH SHIP. It reads in six
different numbers for each one of the
rooms. We actually have a lot of blanks
here because in a data statement the
computer assumes a zero if there is
nothing between the commas and in most
instances there are only one or two
exits from a room.

Now we can move the adventurer
around his little universe. All we need
to do is to set a single variable, in
this case L, to be equal to the room
that the character is in. Then when we
decode his sentence, the first six
objects are the directions. North is
word #1, South is #2 and so on. All we
have to do is to decode that row number
for the room he is in (L) and see if
there is anything in that object number
to move to. For instance, if he is in
room #2 and says "GO DOWN® then S, the
second word that we are going to decode
is going to be a & and we look at P 2,6,
find out that there is a & in that
location and then we change his location
to equal 6. He is now on the midship’s
deck. The lines that actually do that
are from 890 through 1000. The line
that does the actual change in position
is line 1000. There are a lot of things
in there that are logic constructs
which we will discuss later, but the
real meat of it is IFP(L,8) - that is
the P value for the room where vyou are
and the second word he put in. If it is
greater than zero then the adventurer
moves to that point in the array.

Now that we have all the
descriptions listed by number and each
one agrees with the number location you
are in, all we have to do is to print
D#(the room you are in) to picture where
you are.

Before we can discuss how we can
show the picture of things around you,
we have to look at a second important
array — that of all the objects in the
game. There is a second worksheet that
we use for that which is somewhat
similar, but a lot simplier, than the
map and direction worksheet. Each
object has an associated name and number
already and now has an associated
location. We start by listing all of

the objects on the sheet and numbering
them. In DEATH SHIF and other
ADVEMNTURES, I have used the convention
of making all the portable objects
contiguious in the lower halt of the
array and all the non—-portable objects
contiguious in the top half of the
array. To see if an object is movable,
I need only compare the number of the
object with the number of the last
movable object to see if it can be
picked up and carried. Those things that
have special conditions on being picked
up and carried, as say water which would
need a bucket, are put in between the
portable and non-portable objects for
slightly neater logic. We set up two
arrays now, the first is 0%(X) which has
the name of each of the objects in the
ADVENTURE. We also set up & location
array L((X). In the L array we store the
room number in which each of these
objects will ultimately appear in. If

they are to be off screen, say in a
closed locker or not vyet in existance
until a player does something, then we

give them a number higher than the last
raom number and they never appear in the
descriptions. There is one complication
in DEATH SHIF which I would probably
change if I were to do it again. In an
attempt to use all of the possible
locations in the array, and knowing that
N,5,E,W,U, and D would not need to have
locations in that they were not that
type of objects, I offset the locations
siy bytes from the object array.
Therefore, L(X-6) equals the location of
object X. It twrned out that I had to
type in so many X—-é6's that I didn’t end
up saving any space anyway.

So now we have the basic
information we need to move around an
ADVENTURE and look at everything. All
we need to know is what room number the
adventurer is in and we can print an
associated description and then we scan
through the array L(X) and anything that
has the same number as that room number
must be there and can therefore be
printed along with the description. The
line that allows us to do that are 1180
through 1210. Lines 1200 to 1210 tells
vou whether or not there are exits in
the six directions by going through the
row for the room number you are in and
anything that has a number other than
zero must be anocther room. I.E. if you
are in Room &, we word at
Flb,1) ,FP(6,12)..FP(6,6) to see if
anything is there. With just this much
in the system we can walk around and see
what is in every room. After this
things get simplier - if a little bit
more confusing.

Once you have this structure set up
it is very easy to pick up and drop
things and take them with you. We
assigned one location, ©, to be the
location number for the player himsel+f.
Anytime the machine scans through the
LX) array and +Find a zero that means

that the player is carrying the item.
Therefore, to have him pick it up all we
need to do is to decode the word GET or
TAKE 1look at the location of L(X) for
that object’s position and if it is the
same as the room the player is in, L,
then we set the location of that object
equal to 0. If it's a viola, then he
is carrying a viola. OFf course we have
to check to see if the object can be
picked up. One mistake in an ADVENTURE
lead to the embarassing ability of the
adventurer to pick up a wandering stream
and put it into his knapsack.

" The routine to decode that in D.8. is in
lines 360 to 510. The reason why the
routine is so long when all it has to do
ig to find out if an object is next to
vou and make it equal to zero is that we
put a lot of conditions on things that
could be picked up or not picked up at
certain times. Most of that is
subsidary logic which we will discuss
later in the game.

(TO BE CONTINUED IN AUGUST)

[d—(
ORTH -
SOoUTH -
EAST -
WEST =
P -—

Ll

PE 2)

LD
GLOoVES 705)

AEY ?471.(3)
7

_TRE[Ea[e [N~
8
e
2

10 REM BASIC IN ROM USERS WHO HAVE NOT
REFLACED BASIC #3I WILL

20 REM HAVE TO ADD THE SET UF TAFPE FROM
THE WORD PROCESSOR IN

30 REM VOL1,#2 (THE STRING BUG FIX) AND
ADD X=USR(X) TO LINES

40 REM 250,260,720,1700,1720,1780

100 FORX=1TOZ0:PRINT:NEXT:T1=3:T2=0:CA=
23

110 DIMF(18,6),0%(44),L(44) ,D$(18) : GOSU
BE50:60TO1010

120 PRINT:FRINT"TELL ME WHAT TO DO":60S
UB1730

130 IFL(32)=L (18) ANDL (18) < >0OTHEN1&620

140 IFA$="HE"THEN1&&0

150 IFF3=1THENFT=FT+1: IFFT=280RFT=30THE
NPRINT"LIGHT GETTING DIM!!"

160 IFFT>33THENF3=0Q

170 T2=T2+1: IFT2=60THENT2=0:T1=T1+1: IFT
1=9THEN1520

180 IFCA=24THENPRINT"IT"S TICKING LOUDE
R!":T3=T3+1: IFT3=14THEN1530

190 IFF4:>0THENPRINT"IT’S LEAKING!!":F4=
F4+1: IFF4=7THENF4=0:L (32) =18

195 IFA®="CL"DORA$="JU"THENA%="G0D"

200 IFA$="GE"THENA$="TA"

205 IFB$="RA"ANDL=6THENE&="8T"

210 IFA%$="SM"ORA$="BR"THENA%="HI"

220 IFA$E="TH"ORA$="FO"THENA%="DR"

230 IFA$="IN"THENY=0:G60T0OS20

240 FORY=1TOLEN(WS$) : IFMID®% (W%,Y,2)=A%TH
ENF=(Y+1) /2:GOTO260

280 NEXT

260 FORX=1TOLEN(O%)STEFZ: IFMID$ (0%, X, 2)
=R$THENS=(X+1) /2: GOTO280

270 NEXT

280 IFF1=1ANDF< *1THENFRINT"I DROWNED-I
TOLD YOU I CAN’T SWIM!!":1END

290 IFF<1THEN120

J00 ON(F-1)60TO360,480,1440,1390,1350,1
240,1010,500,490, 1560

J10 IFS=SANDL (18)=0THENFRINT"CANT-CARRY
ING TO MUCH":G0TO120

320 IFX>BBORY>Z22THENFRINT" HUH??":60TO1
20

330 F1l=0: IFS=31ANDL (9) < *STHENPRINT"CANT
YET-TO HIGH":G0TO120

340 IFS=31ANDL (9)=5THENL=3:L2=3:60T0116
Q

350 G0TO8%?0

360 IFS=19ANDL (14)=0THENF7=1

Z70 IFE$="WA"THEN1S80

375 IFS=BTHENO$ (8)="ROPE":F2=0

380 IFBE$="HI"ANDL=10ANDL (17)=0THEN1S510

390 IFSH>CATHENPRINT"I CANT":GO0TO120

400 IFS=19ANDL (14) < >OTHENPRINT"NO HAMME
R":G0TO120

410 IFS=11ANDF7=0THENFRINT"IT"S NAILED
DOWN":L (13)=1:60T0120

420 IFS=11ANDL (8)=S0THENL (8)=1

4370 IFS<7THEN120

440 IFS=8THENFZ=0

450 IFY>»BBORL (5-6) < >*LTHENFRINT"I DONT S
EE IT":60T0120

460 IFC=7THENFPRINT"I CAN’T. I'M CARRYIN
G TO MUCH":GOTO120

470 IFC<7ANDL (S5—6)=LTHENL (8§-6)=0:C=C+1

480 IFF=3ANDS:»>6ANDL (S-6)=0THENL (S§-&)=L:
C=C-1

490 IFF=10ANDS=22THENF3=0

SO0 IFF=9ANDS=22ANDL (16)=0THENF3=1:FPRIN
T'"OFPFOSITE OF LIGHT=UNLIGHT"

510 GOTO120

S20 FPRINT"I'M CARRYING":FORX=1T038: IFL(
X)=0THENFPRINTO$ (X+6&) 1 Y=Y+1

S30 NEXT: IFY=O0THENFRINT"NOTHING

5S40 GOTO120

S350 FORX=1T044:READOS (X) : NEXT

S60 DATA"NORTH", "SOUTH", "EAST", "WEST", "
UF", "DOWN

S70 DATA"WIRE","ROFE","KEY","AXE","RADI
o","GLOVES", "MESSAGE", "CUTTER

580 DATA"CRATE", "FRESERVER", "BUCKET","M
oFP", "NAILS", "HAMMER"

SS90 DATA"TIMERPIECE", "FLASHLIGHT", "SCREW
DRIVERS"

600 DATA"BOME WIRED TO A POST"

610 DATA"LIFEBOAT", "PORTHOLE", "TABLE","
SWIMMING FPOOL"

620 DATA"DOOR TO HOLD-LOCKED OTHER SIDE
", "FORTHOLE", "MAST", "PORTHOLE"

630 DATA"HEAVY HINGED LOCKED DOOR"

640 DATA"ANCHOR CHAIN HANGING OVER THE
SIDE"

650 DATA"EMERGENCY LOCKER","LOCKED DOOR
- HAS WINDOW"

660 DATA"SUFPPLY CAERINET","WATER","STARE
OARD RAILING","LOCKED BRIG"

TN

670 DATA"HINGES","A FAINT TICKING NOISE
", "SIGN-ENGINE ROOM AFT"

480 DATA"CLOSED DOOR"

690 We="GOTADRHITIREOPLOL IUNCU"

700 O%="NOSOEAWEUPDOWIROKEAXRAGLMECUCRP
REUMONAHAT IFLSCROLIFPOT"

710 0$=0%+"ASWDOFOMAPOHEANEMLOSUWASTLOH
1A sICL"

720 FORX=1TO38:READL (X):NEXT:L=1

730 DATASO,3,14,17,1,30,1,50,10,5,11,11
.50,10,2,29,31

740 DATA9,7,14,14,7,12,4,5,16,10,5,8,12
,13,18,6,15,31,10,10,10

750 FORY=1TO18:FORX=1T0&:READF (Y, X) s NEX

TX,Y

760 DATAyanss7asss35Gannnasd

770 DATA 13 1O1s1GassssTa70322:12,6545401
]

780 DATA7!!935510!!551_155—1555115s!591
2y,

790 DATA,,ii,13,6,g,gizssssunﬂﬂsssslbss
10

BOO DATA, s s sSanslSsannsssans

810 FORX=1T018:READD® (X) : NEXT

820 DATA"RADIO ROOM ","SHIFPS BRIDGE"
830 DATA"TOF OF FLAG POLE.","OVER THE S
IDE","ON THE BOW"

840 DATA"MIDSHIFS DECK","AFT DECK","A L
IFE BOAT","ENGINE ROOM"

850 DATA"THE HOLD","JANITORS CLOSET","A
HALL WAY","A DOCTORS CABIN"

840 DATA"CAPTAINS CAEBIN","A DANK, SMELL
Y, WET BILGE"

870 DATA"ON AN ANCHOR CHAIN","THE EBRIG"
, "SWIMMING FOOL™

880 RETURN

890 IF (R$="SW"ORE$="F0")ANDL=7THEN1540

900 IFEB$<>"FPO"ANDES$< »"LI"THEN?60

910 IFL< »BANDL< »7ANDL< >1SANDL< »16ANDL < >
4ANDL < >14THENSL0

920 IFL=4THENL=14:L2=L:G0TO1160

930 IFL=14THENL=4:L2=4:G0T01160

940 IFL/2=INT(L/2) THENL=L-2

950 L=L+1:L2=L:G0T01160

9460 IFE$="AN"AND (L=S0RL=14) THENL=16&:1 2=
16:60TO1160

970 IF (B$="ST"ORB$="RA")AND (F2=00RL (6) <
>0) THEN1370

980 IF (B$="ST"ORB$="RA") ANDL=6THENL=4:L
2=4:G0T011460

990 L2=L:IFS»&THENPRINT"CANT GO THERE":
GOTO120

1000 IFF(L,S) *OTHENL=F(L,S):L2=L:G0TO11
60

1010 IFE$="AR"ORE$=""THENL2=L:G0TO1160
1020 IFE$="TI"ANDL (15)=0THENPRINT"TIME
IS "T1":"T2:60TO120

1030 IFLO=7ANDE$="LI"THENL2=8

1040 IFB$<>"PO"THEN100

1050 IFL=7THENLZ=18

1060 IFL=16ANDF3=1THENLZ=15

1070 IFL=4THENL2=14

1080 IFL=15THENL2=16

1090 IFL=12ANDE$="WI"THENL2=14

1100 IFL=15ANDE$="ER"THENL2=17

1110 IFL=SANDE%$="MA"THENL2=3

1120 IFL=6ANDE$="ST"THENL2=4

1130 IFL=SANDE$="AN"THENL2=16

1140 IFL2<>LTHEN1180

1150 PRINT"I SEE NOTHING SPECIAL":GOTO1
20

1160 PRINT"I AM IN "D#&(L):Y=0

1170 IF(L=100RL=150RL=9)AND (F3=00RL (16)
< Q) THEN1380

1180 PRINT"I SEE ":FORX=1TO3Z8: IFL (X)=L2
THENFPRINT" Xx"0O$(X+6)3:Y=Y+1

1190 NEXT:PRINT:L2=L: IFY=0THENFRINT"NOT
HING" : PRINT

1200 PRINT"OBVIOUS EXITS ARE":FORX=1T0Oé&
s IFP (L, X) *OTHENPRINTOS (X)

1210 NEXT:G0TO120

1220 L2=80: IFBE$="WI"THENL2=14: IFL=14THE
NL2=12

1230 G0OTO1180

1240 FORX=1T044

1250 IFL=BANDE$="L0O"ANDL (X)=29THENL (X)=
8:0% (35)="0FPEN LOCKER

1260 IFR$="CA"THENS=37

1270 IFL=13ANDS=37ANDL (X)=30THENL (X) =13
: 0% (37)="0PEN CAE.

1280 NEXT

1290 IFL=15ANDR$="BR"ANDL (3)=0THENP (15,
1)=17:0%(40)="0PEN BRIG"

1300 IFL=14ANDE%="DO"THENF (14,2)=12:0%(
26)="0PEN DOOR":P(12,1)=14

1310 IFL=10ANDR%="DO"THEN13Z0

1320 GOTO120

1330 P(10,1)=12:F(12,2)=10:0%(29)="0PEN

DOOR": 0% (44) =0% (29)

1340 GOTOL120

1350 IFL(S-6)<*OTHENFPRINT"I DONT HAVE I
T":GOTOL120

1360 PRINT"ABANDONING SHIP-NO CHANCE OF
FINDING EBOME BY 9:00":G0TO120

1370 PRINT"MY HANDS SLIFFED! I AM DROWN
ING IN THE SEA":END

1380 PRINT"IT?S DARK! I CAN’T SEE!":G0OT
0120

1390 IFS<»BORL (2) < »00RL< >6THENPRINT"CAN
T YET":60TO120

1400 INFUT"TO WHAT";A%:0%(8)="ROPE TIED
TO "+A%

1410 IFLEN(A%) >2THENA$=LEFT% (A%, 2)

1420 IF (A$="ST"ORA$="RA")ANDL=6ANDL (2)=
OTHENF2=1

1425 L(2)=L

1430 GOTO120

1440 PRINT"WITH WHAT":GOSUR1690

1450 IFA$="FO"ORA$="FI"THENFRINT"YOU’RE
KIDDING":G0OTO120

1460 IFL(4)< >00RA%$< >"AX"THEN1490

1470 IFBE$="DO"THENFPRINT"STEEL DOOR-"3

1480 IFS=15ANDL (9)=LTHEN1S00

1490 PRINT"NOTHING HAPPENED":G0T0O120

1500 L(17)=L(9):0%$(15)="SPLINTERS":G0TO
120

1510 L(41)=0:0%(33)="DO0OR LAYING ON FLO
OR":F(10,2)=9:60T0120

1520 PRINT" THE TIME IS UF!!!":FORX=1T
02000: NEXT: POKES6200,0

1530 FORX=1T0O20: FRINTTAR(X) "BROOMMM! ! ! "
:NEXT:END

1540 IFL(10)<>0THENPRINT"HURRY, I CANT
SWIM":F1=1

1550 L=18:L2=18:60T01160

1560 IFL (8)=0ANDE$="WI"ANDL=9THENCA=24:
L(1)=9:60T0120

1570 PRINT"NOTHING HAFPENED":G0OTO120
1580 PRINT"IN WHAT"::GOSUR16%90

1590 IFL<>180RL (11)<>00RA%< >"BU"THEN161
Q

1600 L(32)=0:F4=1:60T0120

1610 PRINT"I DONT THINK IT’L WORK":G0TO
120

1620 PRINT"WHEW!!!!":PRINT"THE EROME IS
DISARMED"

1630 PRINTTAR(1OQ)"THE TIME IS "T1":"T2
1640 FORX=1TOS:PRINTTAR(S) "CONGRATULATI
ONS ! "sNEXT

1650 PRINT"MAYRE NEXT TIME YOU WONT CUT

IT S0 CLOSE"

1660 IFL=STHENFRINT"NOT ALL EXITS ARE O
BRVIQUS"

1670 IFL=1ANDL (8) =S0THENFRINT"THERE IS
SOMETHING HERE YOU NEED"

1675 IFL=6THENFRINT"LOOK AROUND CAREFUL
LY

1677 IFL< »SANDL< »6ANDL< »1 THENFRINT "HOW
I SHOULD I KNOW-ITS YOUR ADVENTURE

1680 GOTO120

1690 INFUTA%$: IFLEN(A%) *1 THENA$=LEFT$ (A%
g 2

1700 RETURN

1710 FORX=1TOLEN (A%) : IFMID% (A%, X, 1) ANDL
EN(A%) *X+1THENE$=MID% (A%, X+1,2)

1720 NEXT
1730 INFUTA%:FORX=1TOLEN(A%)
1740 IFMID$(A%,X,1)=" "ANDLEN(A%$) >X+1TH

ENB$=MID% (A%, X+1,2)
1730 NEXT: IFLEN(A%$) *1THENA$=LEFT$ (A%, 2)
1760 RETURN

ADDING A DISK

One of the most frequent
have gotten over

questions I
the last month or so
has been "How Do I Add & Disk To My
BASIC IN ROM System". There are a
number of different options on how to do
this.

There are some fixed requirements for
adding a disk. Your system must first
of all have 24K of RAM. O0SI does sell a
few systems with 20K of RAM but they do
not really operate properly with 0845D
until the extra 4K is installed. The
second thing you’ve got to have is a
Disk Drive. O0SI uses the MPI Disk Drive
and pretty well has us locked into using
the one from the factory. The problem
is that we need the Data Separator Card
which is pretty much provided only with
the 0SI machines. Virtually, all of the
S-1/4" disk drives currently on the
market are compatible, but very few of
them have a data separator on board.
The other thing we have to have is a
Floppy Disk Controller Board.

There are a number of different ways to
fill each one of these requirements.
For instance, most of the 0SI machines
with BASIC IN ROM are capable of
handling 8K of RAM on Board. That
leaves us 16K of RAM short. There are 3
practical ways to get the extra 16K RAM.
The first option is to buy the D & N
Micro Products Memory Boards. That has
the advantage of also filling the need
for a Disk Controller. The second
possibility is to purchase a Memory
board from OHIO Scientific.

Unfortunately, 0SI has only been
shipping the 24K RAM beards, and no
longer offers the old 8 % 14K boards.
That puts the price of the Memory up to
about %475.00. It also puts you up to
32K RAM, but it is rather an expensive
route to go. The third option is to buy
either 2 of 8K or 1 of the 16K RAM
boards from AARDVARK and populate it
yoursel f. It’s probably the cheapest
way to get extra memory, but it does
require that you do the building and
troubleshooting and if you have a C4 or

C8 system it does require that you wire
up a long stringy connector to hook it
up to your system. In any case, by one

of those methods
RAM in your system.

you need to get a 24K

The other thing you need 1is a Floppy

Disk controller. There are 3 now
currently available and 1 or 2 more that
should be available sometime in the next
month or two. The o©old stand by is the
0SI 470 board. It's 0O8I's original
rloppy Disk Controller and has the same
exact schematic as is currently used on
the 505 and the C1F boards. It sells
for about #%130.00 populated and tested.
It does have the disadvantage that it is
set up for 8" disks when it's shipped
from the factory and you, therefore will
need to purchase a data sheet from
AARDVARK to show vyou how to change a

couple of resistors and some of the
timing on it to run S5-1/4" disks. The
second choice if you have a C2/4 system

is to purchase the D % N Micro systems
CM? board either bare or populated. b & o
has the disadvantage in that it is not
assembled and tested with the interface
unless vyou buy the full 24k system. It
should come out to be fairly inexpensive
if you build your own.
The other option is 0SI's 610 board.
The 610 will essentially hold 24K RAM
and a Floppy Disk Interface. The board
is designed for the C1P and comes with a
Floppy Disk Interface assembled and
tested and 8K RAM on board for $269.00,
You have to add another Bk RAM before
you can actually use the board.
Fortunately, the sockets for the RAM are
in so all you have to do is plug in
more 2114°'s.

There are also two other Floppy Disk
Controllers in proto right now which I
would not wait for. Both AARDVARK here
in the States and Looky Video in
Australia have prototype wire wrap
Floppy Disk Controllers running but
neither firm has them in production and
I wouldnt hold my breath for them.

None of these methods we have mentioned
are limited to any one system. While
the 610 board is designed primarily for
the C1 it can be wired to the C2/4/8
backpane and some users have used it to
upgrade C4 machines to Floppy Disk. The
same thing goes for the D & N Micro
board and the 470 board. While they are
designed for the 48-pin buss, they can
be wired through a cable to the 40-pin
connector and they have been used by
some people to add this to a C1F.

The third thing that you've got to have
is a Disk Drive. There are three
options open for the S5-1/4" disk drive.
The Cleveland Computer Consumer Center
in Cleveland Ohio, which appears to be a
unofficial 08I factory store, sells the
bare Disk Drive with cables but without
case or power supply for $299.00. We've
heard a number of rumors from 08I that
that deal is about to end. If you want
to get that one, you are going to have
to hurry. The second possibility is to
buy the Disk Drive from 08I. It comes
complete with case, power supply and
cables for $425.00. We are still
checking out a third possibility. I
recently found out that MPI sells Data
Separators for their drives. According

to MFI they sell them for $29.95. We’ve
ordered one and should it work out as
MPI promises, you can get any
inexpensive MFI S-1/4" disk drive and

the data separater board from MFI and be
in business. I hope it works out.

That then, I think, covers all the
options on disk drives except 0SI’s. I
should cover, I suppose, 08I's
recommended procedure for taking a C24F
and upgrading it to a C4 Mini Floppy.
0SI recommends that you send the
computer back to the factory where they
remove the 502 CFU Card and replace it
with a S05 CPU Card and a 327 memory
board. That means, in effect that all
they save from vyour old system is the
case, power supply and S40 board. You
also lose your cassette interface when
you do that. I can think of no
conversion I would recommend less than
that one. It probably ranks right up
there with the all time dumb ideas of
the decade.

C1F SCROLLING INVERSE VIDEO HARDWARE
MODIFICATION
BY LENNART LINDGARD, SWEDEN

Many times we 0SI 600 board owners with
envy have seen that more expensive
personal computers such as FET, CBM and
Apple have no difficulty what so ever
making black characters on a white
background on their monitors. This
trick makes important parts of the
information to step forward and increase
in readability.

So, I asked myself, why not on my 0OSI?
I looked at the schematics of the
computer and saw that it would be rather
simple to implement some sort of
invertion of the video-signal out. EBEut
how was it to be controlled? My first
thought was to cover every
screen—-position with an extra bit, which
was to decide whether the sign on that
particular position was to be inverted
or not.

What I did, was to decode two different
ASCII-characters, one to turn on
"reverse video mode", and one to turn it
off. Now I had to dig in the hardware.

The video unit on most microcomputers
has a video—-memory, that for each
position on the screen contains the
ASCII-value of the character that is to
be drawn there. The video-memory sends
out its ASCII-coded characters one at a
time. Those characters are sent to a
ROM; called '"the character geneator".
The character generator converts the
ASCII-code to a signal which contains
information about the physical looks of
the character. That signal is
transferred to a shift-register. The
shift-register converts the parallel
code into a serial one, which is sent
out towards the video—-monitor.

As I said earlier, I had to choose two
characters out, which were to control
the reverse video mode. 1 decided the
signs, which disturbed the presentation
as little as possible. That is, I chose
the two SPACE’s 0SI provides in their
character generator, character nr. 32
and character nr. 96. I chose to use
nr. 96 to start the reverse video and
nr. 32 to turn it off.

Binary 96 is written as: 01100000, and
32 is written as:00100000. As you can
see, there is only one bit, bit &6, that
differs those two binary numbers. That
made it natural to trigg a ‘'"reverse

we

L 1 vl
VoL M
CHAR.
e 2 @en.
VD4 ;
vD§

VDe

A
1 EQDDDDDDD
s |Is || I3 v4l
*\fﬂ e d %ﬂ‘ *ﬂ ¥ 4
uze : 0! D3 | 5

7405 ™ o ﬂ vzes WA_@M % 00oogoo
: 1 i< A i
< Zlp o2 (08 2
. §, o -

FIGURE 1 O] O mDm__] ﬁ_]
O O
v & Jlg |&allal |g swoee
] m O /Ulm_ O SI0E

*s »plbvloa iy _“) RS _m\ Ol /D&/W& m

F16.3 A O g 0

R O O O O O

M D mnﬁloﬂ ’IIA'L
s FI6 4 . v2e C u21 U28
74L5p5 7415 74 744586

q - COMPONENT
e 7.2 8 X s
N N
N ~
P 1K Al

video on/aff" —flip—flop with the

number: OX100000 and use the X (the &th
bit) to decide the value of the
flip—flop and the reverse video. On or

off.

To be able to control the video from the
O-output of the flip-flop, I had to cut
the foil between pin 9 of the U42 (the
shift-registers) and pin 2 of the U70,
put in an XOR gate and control the XOR
gate from the output of the flip—flop.
The truth-table of the XOR gate is in
" fig. 2.

As the ASCII-code is transferred to the
character generator (U41), long before
the character-looks-signal is loaded in
by the multiplexer for further delivery
to the screen, the "load character-looks
into multiplexer" —-signal should also be
added to the logic term, that triggers
the flip—-flop. That load-signal had to
be inverted with a free XOR gate (see
fig. 3) to fit.

needed to trigger the

course had to happen at
that made it natural to
collect all those

All things
flip—flop, of
the same time,

use an AND—gate to

things. I did use an AND—-gate, but to
save place on the board and to save
iIC’s, I decided to use a diod—gate in
discrete technique (see fig. 4). The
gate should be built—-up by
germaniumdiodes because of their low

voltage, 0.3 volts. Also note that I°ve
used 7405-inverters instead of 7404°s.
That is because of the fact that the
7405 gates have an
open—collector-output, which allows you
to build an AND-gate by simply
connecting the outputs of the gates
together with one resistor connected to
+35V.

got all the hardware
information I°ve got to offer for this
time. It’s only for you to switch on
your soldering iron, get tools,
components and get started. But there
is one thing, and you better read this
carefully: when you start to modify
your computer in any way, think of

Now you’ve

this:

All the warranties and insurances
automatically cease to exist when you
touch vyour computer with a soldering

iron or a wire cutter. The company you
bought the computer from has no reason
for wanting to fix all the bugs you
made when vyou fixed that great new
hardware—mod.

If you are naturally handy with
electronic things, this one shouldn’t be
very difficult. but don’t say I didn’t
warn you.

Ok. That’s about hardware. Now to the
soft part of it all: The programming of
your new reverse video modification.

When vyou’re programming this mod, all
you have to do to turn on the reverse
video is to type "P?CHR$(96);". The
reverse video is automatically turned to
normal again when it hits a SFACE. VYou
can avoid the spaces by replacing them

with dots:

Ex. 10 ?"NORMAL VIDEO"CHRS$ (96) "INV.
VIDEO OFF"

You can also replace the spaces with
"CHR$ (96) "}

Ex. 10 ?"NORMAL VIDEO"

CHR$ (96) "INV"CHR% (96) "VIDEO OFF"

NEW BOARDS AVAILABLE FOR 0SI

For several months now we’ve been
hearing about a new company called D & N
MICRO PRODUCTS, INC. They're located at
3684 N. Wells St. in Fort Wayne Indiana
(Phone # 219-485-46414).

We ve now talked to the D & N people,
seen their catalog, and talked to a
number of people who are using their
products. The news has uniformally been
good, and people who have gotten their
products have been very pleased with
them.

D & N Mico Products manufactures a
number of boards for the 0SI 48-pin
buss. It means that all their boards
are designed primarily to go on the
C2/4/8 machines.

There are a number of boards which
really wouldn®t be of much use to a
hobbiest or small business user, such as
their Centronics Interface and RS232
boards. They do have a couple of
boards, however, which are somewhat
unique and which look to be extremely
handy for the small user. The most
interesting of these, would be what they
call the BMEM-CM? Memory Card. It’s
basically a 527 board replacement. It
comes either bare as the BMEM card or
with 8k, 16kl or 24K of Memory on it.
The prices range from $50.00 bare to
$380.00 for a 24K board. The thing
which makes it unique, however, is that
it also contains a Floppy-Disk

Interface. It’s the only way I know of
currently to buy a bare memory board and
Floppy-Disk Interface for 0SI equipment.

It comes populated with 24K in memory
and the Floppy Disk Controller for
$530.00.

We have had a number of customers now
who have purchased these bare boards and
they have had no particular trouble in
getting them functional. D & N Micro
recently sent uwus a sample copy of the
instructions that come with the Mem @
board and they appear to be extremely
‘clear and easy to follow. You get a 15
page instruction manual including
step-by-step instructions on how to
restrap the ROMs and set the system up
for either 5-1/4 or 8" Floppy’s. D & N
also makes a number of other boards and
their catalog is certainly worth
getting. They have, for instance, a
prototype board for $33.00, 08I is
supposed to have one of these, but I
have yet to see them ever ship one.
They also sell the 8-slot Backpanes., for
the 48-pin buss, FParallel Printer
Interfaces, Serial Interfaces, a number
of different memory boards aside from
the MEM-CM?, & Diablo Parallel Printer
Interface and miscellaneous equipment.

In talking to the management at D & N, I
found out that they have been in and out
of the direct mail business over the
last several months. They begain by
advertising in a number of magazines and
then found that the dealer business took
up their entire production. They are
now once again in the direct mail and
retail business and seem to be planning
on staying in that business now that
their production can handle the
increased demand.

Mr. Cass has upgraded the Word
Processor from last year and added some
features to take advantage of the
capabilities of the ClE/C2E ROM. I added
the routine at 1400 to allow editing of
individual lines without retyping. That
routine can be used with any ROM.

MINI WORD PROCESSOR
BY J.L. CASS, NORTHRIDGE CALIFORNIA

10 REM MINI WORD FPROCESSOR

20 REM RY James L. Cass 1981

30 PRINT CHR$(26) TAR(18) "LINE
EDITOR":PRINT

40 PRINT"AFTER EXITING, RESTART PROGRAM
BRY *GOTO 1007

S0 PRINT"OFTIONAL FOR PRINTing: M=LEFT
MARGIN, P=0 NO PAGING,

60 FPRINT"P=1 FOR V (=54) LINE FAGES, P=2
NUMEBERS FPAGES. ":FPRINT

70 FRINT"USE NO QUOTES ("CHR$(34)") IN
COPY FOR TAFPING

80 PRINT:PRINT"CALL COMMANDS WITH? /73 /H
OR /H FOR HELP.

P00 PRINT: T=600:DIM

AS(T) : L=1:V=84: M=0: Bg=""

100 PRINT L3z INPUT A%:REM WARM START
WITH *"GOTO 1007

110 IF A%=""THEN A$(L)="":L=L+1:60T0
100

120 IF ASC(A%)< >47 THEN

A% (L) =A$:L=L+1:60T0 100

130 A=ASC(MID% (A%,2,1))

140 IF A=67 O0OR A= 99 THEN 310:CLEAR
SCREEN

150 IF A=72 OR A=104 THEN 400:HELF

160 IF A=86 OR A=118 THEN S00:VERIFY
170 IF A=70 OR A=102 THEN S20:FIND

180 IF A=65 OR A= 97 THEN S540:ADVANCE
190 IF A=68 0OR A=100 THEN &00:DELETE
200 IF A=73 OR A=105 THEN 700: INSERT
210 IF A=85 OR A=117 THEN 7&0:UNSAVE
220 IF A=83 OR A=11% THEN 800:SAVE

230 IF A=82 OR A=114 THEN 850:REFLACE
240 IF A=76 OR A=108 THEN 900:LIST

250 IF A=78 O0OR A=110 THEN 980:NUMBERED
LIST

260 IF A=80 OR A=112 THEN 1000:PRINT
270 IF A=87 OR A=119 THEN 1200:WRITE
TAFE

280 IF A=84 OR A=116 THEN 1200:TAFE
INPUT

285 IFA=6B80RA=100THEN1400:REM EDIT A
LINE

I00 GOTO 100

310 PRINT CHR% (26):G0T0O 100:CLEAR

400 PRINT"/LTR OR /LTR IS
COMMAND. ": PRINT

410 FPRINT"/H HELF /F FIND /A ADVANCE
420 FRINT"/L LIST /N NUMBRERED LIST /F
FRINT

430 PRINT"/C CLEAR SCREEN /T TAFE INPUT
/W WRITE TAPE

440 PRINT"/I INSERT /D DELETE /R
REFLACE

450 PRINT"/S SAVE /U UNSAVE /V VERIFY
460 PRINT"/E EDIT A LINE":FPRINT

470 PRINT"START WITH QUOTE (CHR$(34)")
IF LINE STARTS

480 PRINT"WITH SFACE OR CONTAINS ANY
COMMAS OR COLONS.

490 PRINT:G0TO 100

500 PRINT @3 A$(Q) :60T0 100:VERIFY

S20 INPUT"#";Q:6G0TO S00:FIND

S40 INPUT"#"3;R:IF @Q+R>T THEN 100

550 IF @+R<1 THEN @=1:G0T0O S00

560 O=0+R:G60T0 SO0

600 INFPUT"DELETE";X:IF X>L THEN 100

610 PRINT As(X): INFUT"O.K.":A%: IF

ASC (A%) < >89 THEN 100

620 L=L-1:FOR Y=X T0O

L:A%(Y)=A%(Y+1) :NEXT:G0OTO 100

700 F=0:REM INSERT

710 INPUT"AFTER LINE":X:IF X>*L THEN 100
720 IF F=0 THEN INPUT A$:IF A$="NO" THEN
100

730 L=L+1:FOR Y=L TO X+2
STEF-1:A%(Y) =A% (Y—1) : NEXT

740 A% (X+1)=A%$:GOTO 100

760 F=1:A%=B$:160TO 710:REM UNSAVE

800 INPUT"SAVE LINE";R:IF R>T THEN 100
810 B&=A%(R):G0TO 100

830 INFUT"REFLACE LINE";R:IF R>T THEN
100

860 PRINT A% (R):INFUT A%

870 A% (R)=A%:60TO 100
00 F=0:REM LIST

P10 INFUT"START LINE
ALL) "3 A%$: A=ASC (A%)
920 IF A=65 OR A=97 THEN X=1:Y=L-1:PRINT
CHR$ (26) : GOTO 940

P30 X=VAL (A%) : INFUT"TO LINE";Y

240 FOR I=X TO Y:IF F=1 THEN PRINT I;
P50 PRINT A$(I):NEXT:PRINT:GOTO 100

980 F=1:60T0 910:NUMBERED LIST

1000 PRINT CHR$(26):REM PRINT

1010 POKE S17,1

1020 FOR I=1 TO &:PRINT:IF I=2 AND P=2
THEN PRINT"PAGE 1":I=3
1030 NEXT:R=2:FOR I=1
SPC(M+1) A%(I)

1040 IF I/V<HINT(I/V) OR P=0 THEN 1090
1030 FOR X=1 TO 7:PRINT:NEXT

1060 IF P=1 THEN PRINT

1070 IF P=2 THEN PRINT"PAGE"R

1080 R=R+1:FOR X=1 TO 4:PRINT:NEXT

1090 NEXT:FOR X=1 TO 8:PRINT:NEXT:FOKE
S517,0:60T0 100

1200 PRINT"START TAFE AND HIT <8SHIFT>
WHEN READY.

1210 POKE 57088, 1:WAIT 57088,6

1220 POKE S517,1:FOR X=1 TO L-1

1230 PRINT CHR$(34) A% (X)

1240 NEXT:PRINT"Xx":POKE S17,0:G0OTO 100
1300 PRINT"START TAPE AND HIT <SHIFT:>
WHEN READY.

1310 POKE S57088,1:WAIT 57088,6

1320 FOKE 515,255

1330 INFUT A$:IF As="xx" THEN 1350

1340 A$(L)=A%:L=L+1:60T7T0 1330

1350 POKE 515,0:60T0 100

1400INPUT"EDIT WHAT

LINE";E: IFE*LTHEN1OO

(A FOR

TO L-1:PRINT

14107A% (E) : INPUT"CHANGE" ;C%: IFC$="N"THEN100

1420INPUT"TO
"sNWs: A$s=A% (E) : FORY=1TOLEN (A%) ~LEN(C%) +1

14Z0IFMIDS (A%, Y,LEN(C%)) =C$THEN1450
1440NEXTY: ?"NOT FOUND":GDTO100
1450A% (E)=MID$ (A%, 1,Y—~1) +NWs+ MID%
(A%, Y+LEN(C%)) : GOTO100

1999 END

IMPROVING RANDOM ACCESS FILES ON &5D
BY DAVE POMFEA

I have two programs, the first is a

patch for disk random files (LUN #6),
the second program will put a volumn #
and title on your disks (hide it in the
unused space at the end of sector #4 on
track 12)

11

that 0&I
Every time

There is a flaw in the code
uses to access random files.
you do a GET,N 0S65D calculates the
track to find that record on and then
proceeds to read that track, even if
that save track is already in memory.
Remember that using 128 byte records, 16
records will it on each track. That
means that if your program is searching
the file for a record it will be verrrry
slow. The patch fixes this. I+ the
track is already in memory, it skips
the disk read.

the patch program, include it at
of your program and put your
in the OFEN stmt. The patch
grabs some memory at the top of RAM,
FOKEs in the new code, and FOKEs in a
jump to it after the OPEN statement.

To use
the start
file name

GET &
in full,
DOS

Also, the commands OPEN, CLOSE,
FUT don’t have to be spelled
all vyou need is the first letter,
skips the rest up to the comma.

"A PROGRAM TO CREATE VOL# & NAME ON
DISKS"

S REM FPGM NAME IS VOL.CR
7 REM by Dave Fompea
Journal

100 REM CREATES VOLUMN AND NAME OF DISK
120 REM

130 PRINT:PRINT:PRINT"VOLUMN & DISK
NAME" : FRINT

140 INPUT"ENTER VOLUMN # (1-285) ";VUN
150 PRINT:PRINT"ENTER NAME OF DISK"
160 INPUT DN

170 IFLEN(DN%) *153THEN PRINT"
LESS THAN 1&6":PRINT:GOTO1350
180 DN$=CHR% (VN) +DN%

190 IFLEN(DN%) >1&6 THEN DN#&=DN&+"
":60TO190

195 REM Get overlay #4

200 DISK"CA 2E79=12,4"

220 FORI=1TO1é6

225 REM FPOKE Vol # & Name to free space
230 POKE12135+I, ASC (MID$ (DN#,I,1))
240 NEXT

245 REM Put back on Disk
250 DISK!"SA 12,4=2E79/1
260 PRINT:PRINT"XEOQJ VTOC":
270 END

for Aardvark

*¥MUST BE

PRINT

ADD THESE LINES TO YOUR DIRECTORY PRINT

PGM. (DIR OR BEXECX)

140 DV=2:PRINT:FRINT

141 DISK!"CA 2E79=12,4

142 UN=FEEK (12136): IFVN=0THEN1S50
143 PRINT:PRINT"VOL.#"3;VN;
144 FORI=12137T012152 :
PRINTCHR® (PEEK (I))3: NEXT:

FRINT: PRINT

150 REM GOTO HERE IF NO VOL # % NAME ON

DISK

10 3 FIX FOR RANDOM FILES (#6&)
20 3
Z0 3 BY D. POMFEA
40 3
50 ; COPYRIGHT 1981
60 3
100 8000 X = %8000
120 8000 AD2C23 LDA $232C ; TRACK
IN MEMORY
130 8003 8D1780 STA TR.MEM
140 8004 20CAZE JSR $2ECA ;FIND
TRACK BY RECORD # '

150 8009 AD1780

160 800OC CD2D23
TRACE.

170 BOOF FOO3

AS 0OLD

180 B8B011 206729
READ

190 8014 4CBEZZ SKIPF
s RETURN

200 8017 OO
.10 02,02

LDA TR.MEM

CMP $232C ;NEW
BEQ SKIF ;SAME
JSR $2947 ;DISK
JMP $228E

TR.MEM. .RYTE ©

10 REM PGM NAME IS RE.FIX

20 REM

30 REM BY DAVE FOMFEA

40 REM

50 REM PATCH SO THAT GETS FROM FILE #6&

DON’T READ DISK EVERY TIME.
60 REM ONLY WHEN NEW TRACK
70 REM
90 REM GET SPACE AT TOFP OF MEMORY FOR
FATCH
100 BA=FPEEK (133)
110 POKE133, BA-1
120 REM GET CODE & FOKE IT IN
128 FORI=0OTO23
130 READC: IFC=31THENC=RA
135 POKEBAX256+1,C
140 NEXT:CLEAR
200 DISKOPEN, &, "Your File name herA
135 POKEBAX25&6+1,C
140 NEXT:CLEAR
200 DISKOPEN, &, "Your File name here"

210 REM OFEN GETS SECTOR 4 FROM TRACK 172
% STORES AT $2E79 (DIR BUFFER

220 REM

230 REM GET CODE ADDRESS (BA ZEROED WITH
*CLEAR")

240 BA=PEEK (133)+1

245 REM POKE IN JMP TO PATCH

250 POKE11966,76

260 POKE11967,0

270 POKE11968,BRA

300 DATA173,44,35,141,23
46,173,23,31,205, 44

310 DATA3S,240,3,32,103, 41,76,142,34,0

, 31,32, 202,

12

MEMORY RELOCATOR
BRY CHARLES A. STEWART

I purchased the EFROM Burner from
AARDVARE. I have been toying with the
idea of placing many routines I utilize
on EFROM, because with a cassette based
system the 0SI ASSEMELER EDITOR would be
very convient to use if it could be
booted in from FROM instead of the 8
minute load from tape.

Since

The major problem with these machine

language programs is they start load in
page 2 and in the case of the assembler
run thru $1396. If the program resides
in the norm basic workspace as the

assembler and AARDVAREK CHESS FROGRAM do
the task connot be done in Rasic. After
some trial and error I developed a short
program which will move any program -
MACHINE LANGUAGE OR EVEN BASIC to any
location in RAM in a twinkling of an

eye. The routine is short and simple
enough to enter into the monitor when
you require it buy may of course be

saved on tape.

Listing 1 is a simple Easic program
which may be used to relocate programs
into RAM from addresses above page 3 and
of course Rasic and Monitor Roms. The
routine is very slow in comparison to
the equivilent machine language routine.

I utilize a move from Monitor Rom to
$2000 in this example.

LISTING 1

10 Z=0:FORX=63488 TO 65535 :
Y=FEEK (X)
20 FOKEZ+8192,Y :

Z=7Z+1 @ NEXT

Machine language routines — May be used
for any memory locations and is
relocatable by changing the incrument
page address to correspond to the proper
location.

"LISTING 2"
10 0000 : MEMORY RELOCATOR VER
1.2
20 0000 ;BY CHARLES A. STEWART
60 0000 ;
70 Q000 MON=$FEOC
80 0000 FROM=$1F06
90 0000 TO=$1F09
100 0000 ;
110 1F00 ¥=$1F00
120 1F00 A008 LDY #$08 ;LOAD WITH

NUMBER OF PAGES TO RELOCATE 8=2k

130 1F02 A200 LOOF1 LDX #%00

140 1F04 RDOOFS8 LOOF2 LDA $FB800,X
;START ADDRESS OF FROG TO RELOCATE

150 1FQ7 Q00020 STA $2000,X ;LOCATION

TO PUT TO
160 1FOA EB INX
170 1FOR DOF7 BNE LOOFZ

180 1FOD EEO&1F INC FROM
190 1F10 EEQ91F INC TO

200 1F13 88 DEY

210 1F14 DOEC ENE LOOF1
220 1F16 4COCFE JMF MON .AZ2

The machine language equivalent seems
longer and more complicated but just try
running both. The Basic FEEK and FOKE
routine requires 27 sec to run, the
machine language equivalent runs so fast
that you might not even know it ran so I
jumped to the monitor at $FEOC to
indicate that the routine has completed
its task, run time is under 1 second!

I have utilized this method to relocate
the 08I ASSEMBLER/EDITOR and AARDVARE
CHESS FPROGRAM and burned to EPROM. I
have also disassembled them both to
learn how they operate.

10 0000 ; PROGRAM TO READ FROM
EPROM

20 0000 1BY CHARLES A. STEWART
&0 0000 H

70 0000 H

80 1F30 ¥=%1F30

Q0 1F30 AZ00 CONT LDX #$00
100 1F32 A00 HERE LDA #$00
110 1F34 BDOZF2 STA $F202

120 1F37 A%00 THIS LDA #%00
130 1F39 C?08 CMP #408

140 1F3B DOO3 BNE HEREZ

150 1F3D 4CSA1F JMP END

160 1F40 8DO1F2 HEREZ2 8TA $F201
170 1F43 ADOF32 LDA $F203

180 1F44& 9DO00O STORE STA
%0000, X3 ADDRESS TO PUT TO

190 1F49 EE331F INC HERE+1
200 1F4C EB INX

210 1F4D DOEZ BNE HERE

220 1FAF EE481F INC STORE+Z
230 1FS52 EE3Z81F INC THIS+1
240 1FS55 AR00 LDA #$00

250 1FS7 4C301F JMP CONT

260 1FSA 4COCFE END JMP $FEOC

The article below should be the final
word (I hope) on how to interface the
Guick Printer II. — No more software
patches — No more weird POKEs.

MR. R. WRAIGHT, HANTS, ENGLAND

The enclosed hardware modification will
mate a Quick Printer II on a Superboard
without any software patch. As
mentioned in previous Journals POKEing
in loads of nulls etc. works, but as the
printer does not like nulls you
sometimes get spurious characters

13

printed at the beginning of the
The Mod is as
the printer

line.
follows:-on the back of
there are two edge
connectors intended for Radio Schack
computers on one of these there is a
signal called "Line". This signal is
normally high, but goes low everytime
print head is to move or moving. We can
use this to control the C.T.S. line on
the ACIA assuming you’ve already fully
popul ated your RS232 IN and OUT. The new
C.T.S. line from the printer should goto
J3 pin 3 (RS8232 in). The CTS2 can now be
picked up at J3 pin 10 (CTS2). We now
only need to link CTS2 to the ACIA pin
24. This is easily accomplished as then
a line pad (W3) just by the ACIA. Cut
the track as shown on sketch and connect

CTS82 to pad shown. This completes the
Mod to the Superboard. For the more
ambitious it is possible (two of the

screws are under the rubber feet) watch

out for the led. The new CTS can be
wired to the Din plug internally by
tracing the shown edge connector track
back to a plated thr’o hole and

soldering a wire to this and then take
other end of wire to an unused pin of
the Din plug. Then all connections from
printer are still contained in one
cable. The only restriction to above
software is that the terminal width
should be restricted to 31 i.e. POKE
15,31. The reason for using the R8232
in for CTS is to ensure that no spurious
voltages etc. can get into Superboard
from the printer. I hope the above
information is of some use to others.

CREAR - QPIL)

ED o zpﬁ
=S s
m o

%2/54) Crs SiguAL . AJAILABLE W

E 7=> oLE

Rs T4 S D A o i ol
uIe
Acna

CoOMMECT LWIIRE (FROM

J3 A 10 R R
HERE CTsz) A£D)

CUT 7TRACE HERE=E

LETTERS, LETTERS, AND MORE LETTERS

LEON DAUGHERTY,
CALIFORNIA

RANCHO FALOS VERDES,

last
that

I wrote you week about my
disappointment the CE2 ROM would
not load WP&S0Z2. You might be
interested in how I have temporarily
solvad this problem. You might want to
include the following as & suggested

. alternative way of installing the

CEGMON for anvone who is using WP&6S02.

Follow the printed instructions
except for the following. After removing
the three jumpers at ULlS install a 14
pin DIF socket at U1S. Connect the
wires from the 74154 pins 9 thru 11,13,
and 15 thru 17 to a 14 pin DIP plug in
accordance with the sequence in the
printed instructions. The wires should
be long enough to allow easy insertion
and removal of the plug in the socket at
uis. On a second 14 pin DIF plug
connect jumpers from pin 1 to pin 12,
pin 2 to pin 11, and pin Z to pin 10.

Remove the jumpers or cut the foil
at W4 and WE. Cut two 2" lengths of
wire. Strip one end of each 1/8" and
the other end 1/4". Using the 1/8"
stripped ends solder a wire to the
center hole at both W4 and WS. I used a
#58 drill to clean the solder out.

Obtain a screw terminal tip for printed
circuit for printed circuit boards with
a 200" center spacing. I used and Ok
Machine and Tool, No. TS-8. I cut thru

the terminal strip at terminals I and 6.
This provided two 2 screw terminal
strips with approximately the spacing of
the jumper holes at W4 and WS. With
slight bending of the solder pins to fit
the spacing of the holes you can solder
one of these strips at W4 and the other
at W3. When soldering these be sure
the solder flows on both sides of the

FCE.

Monitor ROM and set it
unsolder and remove
the monitor socket US. Install a Zero
Insertion Force Socket at US. I found
it necessary to move one bypass
capacitor to the back side of the board
to provide room for this socket. One
other had to be moved and soldered to
the ground foil instead of the hole it
was in.

Remove the
aside. Carefully

This completes the changes in the
installation proceedure. You now have a
02 board that can be easily converted
from the SYNMON to CEGMON and back as
needed. For SYNMON insert the wires at
W4 and WS in the leftmost terminals and

14

tighten the screws. Insert the plug with
the jumpers at U1IS and install the
SYNMON ROM at US. You are now in
business for using WFP&S02.

For CEGMON move the wires at W4 and
WS to the right side, remove the plug
with the jumpers from U1S and insert the

plug with the wires from the 74154.
Remove the SYNMON and install CEGMON.
All the conveniences of CEGMON are now

available.

This is an inconvenient changeover
because it does require removing the
bottom cover each time, but since there
is no soldering and the Zero Insertion
Force Socket makes changing the ROM easy
and safe, it only takes a few minutes to
make the change.

JAMES C. SCHMOOCK, SAN JOSE, CALIFORNIA

Here is line which was missing from the
SLASHBALL program in the April 1981
JOURNAL . This 1line allows the program
to run on the Cl. Without it the ball
gets served off the screen.

166 IFVE=600THENFPN=
INT(S54148+24%RND(8)) :MF=L

The JOURNAL is great - keep it up.
Request - how about some discussion of
how to make Machine Code programs run
with the C18 ROM. Specifically how to
use info in the C1S instructions like
getting "E-Z LISTER" and other published
programs to run.

LESTER CAIN,

Did you know it is possible to load
Assembly source code into BASIC
workspace and vice versa? By using the
Indirect File function one can dump
either Source into the others work area.

One possible use for Basic in Assembly
would be to delete blocks of lines, but
care must be taken as long lines will be
shortened.

By putting Assembly source into
Rasic a person can edit the file with
Aardvarks® Editor or renumber it with
different values other than what is
available with the Assembler. There is
a hazard here also in that the first
spaces are removed and won’t look as
neat.

While on the subject, can anyone
tell me where the values for the
Assembler’s resequence are located? It
is a hassle to use line 10 as a starting
place all the time. I have written my
own resequence routine to do this but
then it has to be assembled also and
takes more time. Any information on
this would be appreciated.

FETER BUTTERFIELD, PALO ALTO,
CALIFORNIA

Thank you for your letter of April 27th,
responding to my questions about the
assembler on the 08I game disk. Your

statement that it was for a C4F provided
the info I needed to make it work. I
simply patched the Assembler’s keyboard
routine as shown below, to complement
the characters stored and read at DFO0O,
and now it works fine! Thank you!

Regarding reading disks at 2MHZ: When I
made the change, I tapped the clocking
signal at the next lower frequency (the
clocking signal for the disk circuit,
that is), so that the data rate to and
from the disk remained as before. So
far it has worked with no problems.

1 Q1547

ASSEMELER AS SUFPPLIED ON GAME DISK

1547 ADOOFC LDA $FCOO
154A 4A LSR A
154E 200D BCC #1355A
145D 200FF24 JSR $Z24FF
1550 4903 EOR #$%03X
1552 DOED BNE 41541
1554 8D252T STA $2325
18557 4C0002 JMP $0200
155A 206015 JSR $13560
158D 4C5015 JMF %1550
1560 A%E1L LDA #$E1
1562 206D15 JSBR $156D
1565 3005 BVYC $1356C
1567 4A LSR A
1568 4A LSR A
1569 4A LSR A
156A 90F 6 BCC $1562
156C 60 RTS

156D 8DOODF STA $DFQO
1570 2C00DF RIT $DFOQO
1573 &0 RTS

1574 00 EBRK

1575 00 BRK

(00 THROUGH 1&FF)

CORRECTIONS FOR C1FMF:

1547 AD LDA $FOO0OQ
156D JMF $1575
1570 2C BIT #1574
1573 &0 RTS

1574 00 BRK

1575 PHA

1576 EOR #FF
1578 STA $DFOQO
157R LDA $DFOQO
157E EOR #FF
1580 STA #1574
1583 PLA

1584 JMFP %1570

15

CHUCK SCHALL ,

DONALD R. ERENNAN, NORTHEORO
MASSACHUSETTES
"10 CENT BREAK KEY MOD"

This mod will eliminate accidental Break
Key operation. A 3/8" ID X 1/4" H
rubber grommet is used to insure a
moderate pressure is required to operate
the Break Key.

Gently pry up
your fingers.
portion of the

the Break Key Cap using
Then cut off the lower
grommet as shown.

Place the top portion of the grommet
over the Break kKey Switch Top with the

large end down. Now gently install the
Break Key Cap. Fower up and notice
Break Key must be pushed firmly to

operate and no more accidental EBEreak Key
operations will occur.

GROMMET
cur P
HERE

WEST HAVEN CONNECTICUT

After reading in the April AARDVAREK
Journal that the new Superboard provided
a three second delay on reset, I decided
to try and implement a similar
modification to my C1P. The easiest
method that I found was to use a 74393
dual 4 bit counter driven by the 120 Hz
signal C14. Also required was a spare
7404 inverter. This circuit provides a
delay of approximately two seconds
before reset occurs. By changing
C14 input to either C13 or C1S the
delay can be changed to one second or
four seconds respectively. An added
bonus is that this circuit also provides
power on reset.

the

%’I
PINi2 (C 1)
+5 +5
RI2 ! ﬂT
743793 |6
13
a2 us
BREAK —{>o—> Ango
KEY 740;E>

DON VANSYCKEL, MIDDLERURY, VERMONT

Concerning the article "HOW TO
CHANGE DISK RBUFFER LOCATIONS" by Tim
Wal kenhorst in Aardvark Journal Vol.li
No.&, it would be advisable to point out
to vyour readers that the end of RAM
pointer which BASIC uses must be
changed. Otherwise, the disk buffer
will over write BASIC strings and vise
versa. This may be done by:

10 POKE (B260,FEEK (8960)-13

F9FOKEBR60, PEEK (B8960) +13: END

Note, if buffer # 7 is used the 13
in the example above must be 2

The done
directly.

Second.,

FPOKEd value may also be

if the current values of
the #6 buffer END LO & HT are examined
they are found to be the same as #7
buffer START LO & HI. Since #4 buffer
does not write in #7 buffer it is
obvious that the END LO & HI is the
address of the end of the buffer +1, a
fairly common trick for 0SI (REF. (0S-65SD
V3.0 USER’S MANUAL FPRELIMINARY COFPY
OCTOERER 1978, P.58). With this in mind,
the table locks out one byte of RAM more
than the disk buffers require. This one
(286

byte actually costs
since BASIC's end of RAM pointer

a whole page

A solution to

]
PR L

Q
120

128
Q
120
Q
120

%00
%78
00
%80
$00
$78
$00
$78

32K

112

120

112

$00
70
$00
%78
$00
70
00

bytes)
is only page specified.
this is
in the table in the
them:
TABLE OF VALUES FOR CHANGING DISK
LOCATIONS (5-1/4" DISK)
#6 BUFFER
FUNCTION ADDRESS
START LO 17190 $4326
START HI 17191 $4327
END LO 17192 44328
END HI 17193 %4329
INFUT LO 17324 $43AC
INPUT HI 17325 $43AD
OQUTFUT LO 17347 $43C3
OUTPUT HI 17348 $43C4
#7 BUFFER
FUNCTION ADDRESS
START LO 17198 $432E
START HI 17199 $432F
END LO 17200 $4330
END HI 17201 %4331
INFUT LO 17405 $43FD
INFUT HI 17406 $43FE
QUTFUT LO 17430 %4416
OUTPUT HI 17431 44417

112

70

to add 1 to the addresses given
article making

BUFFER

24K

O
88
Q
96
(o]
88
O
88

$00
58
$00
£60
$00
$58
$00
$58

24K

0
80
Q
88
Q
80
Q
80

$00
$50
$00
$58
$00
50
$00
$50

The BASIC end of
now be modified by:

RAM pointer may

10 POKEB?60,FPEEK (8960)-12

99 POKEBR4L0,FPEEK (B60)+12

Note, if buffer #7 is used the 12
in the example above must be 24

In addition it should be noted also
that 8 inch disk uses 3K (12 page)
buffers and the values in the tables
should be adjusted accordingly.

(I haven’t had time to look for the
page count which will allow the use of
13 page buffer. Fossibly someone else
has investigated this.

KERRY LOURASH, DECATUR, ILLINOIS

I would like to point out an error in
line 20 of the C2P BASIC Load program.
The last data element should be 162, not
b2,

I"d also like to remind you of the error

in the E.Z. Lister program. Location
023A in the program should contain 94,
not 24.

You said you wanted to know how people
liked the Jouwrnal’s new format: I'm easy
to please — as long as the listings are
legible I'm satisfied. I hope more
people are renewing their
subscriptions.

CURRENT
126 $7E
SO $32
126 $7E
58 #%3A
126 &7E
S50 %32
126 $7E
S50 %32

CURRENT
126 $7E
58 $3A
126 $7E
bbb $42
126 $7E
58 $3A
126 $7E
58 $3A

16

ALBERT J. McCANN JR,
ARIZONA

LITCHFIELD FPARK,

A short review of Mittendorf
Engineering’s Hi—-Res Graphics Board and
other related thoughts.

Mittendorf’s High
Board up and

I finally have
Resolution Graphics
running. I bought the bare board
version and scrounged up the parts I
needed quickly and cheaply, except for
“the 40 pin jumper.

To connect the Hi—-Res board vyou
need the 40 pin jumper and a 16 pin
jumper . The 40 pin jumper 1is the
expansion buss and the 16 pin jumper
brings in the needed timing signals. My
video on the CIlF refused to operate
correctly because the 16 pin jumper
acted like a 16 pin capacitor. I had to
separate the wires of the jumper to cure
this.

One other problem I had was with

the 8728 chips that drive the data bus
on the 40 pin expansion buss.
Mittendorf suggested removing them and

putting jumper wires in the sockets to
cure this. DO to DO etc. This fixed all
problems.

The assembly manual was pretty good
and I made no wiring or soldering
errors.

The day before I installed my
Hi-Res board, I received from Mittendorf
Eng., some software for the board. It
would not operate correctly with the
Aardvark C18 ROM. I built a monitor ROM
switch which I will explain later.
PEEKing and POKEing Hi-Res memory
worked OK with the C1S ROM. The
Mittendorf software is a M.L. patch
‘which adds new commands: LOAD CLEAR -
CLEAR HI-RES MEMORY, LOAD NEW - OLD LOAD
COMMAND, LOAD X,Y, 1 OR O - A FLOT X,Y,
i1 OR O command with 1 lighting the dot
and 0 turning it off.

A sample 3D program is included
which gives fantastic graphics. It takes
about S5-7 minutes to build this
display.

With the plot routine the 0,0
origin is the lower left corner, and
256,256 the upper right.

It is very easy to do 2D plots with
this also.

The video of the Hi—-Res board is
combined with the CI1P video so that the
two graphics types can be used
simultaneocusly. The CI1P video can
supply the numbers and base line and the
Hi-Res video the plot. Hmmm! Scenery
for an Adventure game!

Back to the C1S ROM problem. The
plot routine uses the I/0 in the old ROM
and I haven’t changed the jumps vyet, so
I made this simple adapter that switches
between the C1P ROM and the C1S ROM:

17

cls
CiP |18 4
‘0 - e
. g
(] th
vig, pv 4
vig,Pin3 wcq;Pa')

Wire all the pins in parallel with
each ROM except for Pins 18 and 20.
Both phase 2 clocks are at Wé6. Switch
shown in old C1FP ROM position.

BARE BOARD ¢ 30.00
WHOLE KIT $185.00

PRINTING GRAPHICS WITH
0865D

Normally we are
characters when
non-ASCII
accidently

limited to ASBCII
using 45D because
is masked out to keep us from
sending control codes to
other equipment (printers). That is not
handy when you are programming games.
Fortunately, it is easy to fix. Just
FOKE the offending code out of
existance.

100FORX=9657T09664: POKEX,234 : NEXT
L10FOKER033, 2341 POKES034, 234

Then try
appear.

"?CHR$ (244)" and see the tank

FOR SALE

0SI SUFERBOARD IN CASE WITH BUILT-IN
300-600 BAUD, REAL TIME CLOCK AND
REVERSE VIDEQ.

8k INCLUDES UNASSEMELED 3

EXPANSION WITH MAJORITY DFBZAR$QTDV2R§MP
FOWER SUPFLY, TAPERECORDER. SONY 12
MONITOR MODEL IS TELETYPE WITH INTERFACE
(OPERATIONAL) , PAFER, BOOK, AND
ACCESSORIES, APPROX. %200 WORTH OF
SOFTWARE- TOTAL FRICE $799.00.

SEND INQUIRES TO:

ROBERT CORWIN,RD#1 ROUT
. E 3
FORTVILLE, NY 14776 R,

OR CALL: (716) P3I-46749

WHATES NEW AT AARDVARE

It has, as usual, been an extremely busy
couple of months since we published the
last Journal.

The most fun item
the month has got
a real-time

we have picked up in
to be Labyrinth. Ifs
monster hunt through a maze
similar to that in Minos. You actually
see a 3I-dimensional maze as you walk
through stalking monsters. The game
runs in real time and vyou see real
monsters moving across the corridors in
front of you as you stalk them. I admit
to having spent several hours debugging
and testing this program. There weren't
any bugs in it, but the testing was a
lot of fun. In my personal evaluation
it's one of the neatest games we’ve
published in several months.

$13.95 on Tape and $15.95 on Disk.

We also have exciting news for those who
like to experiment with Machine Code but
don"t really want to write any.
AARDVAREK. is now marketing a Compiler.
It’s a very small, very tiny and very
limited, but it’s also very cheap. This
Compiler takes an extremely limited

set of Basic keywords and writes them
into & Machine Code program. The
Compiler itself is actually a program
which sits in memory numbered from BOOO
on up and which then PEEKs a praogram
written between lines O and 7999 and
converts it to a Machine Code program

which places it at the top of memory.
It has very few keywords so far. It has
*» —» =, POKE, PEEK, IF, THEN, GOSUR and
GOTO. By the time you get this Journal
we should have had added the additions
on to it for FOR, NEXT, USR(X). With a
little ingenuity vyou can write video
games with only the material in the

Compiler. I spent the first couple
hours after I received it writing a
FOTATO CHIF INVASION type program in
Machine Code. It took me about two

hours to write it,
Machine Code speeds.

and it operated at

As I have a personal enthusiasm for
Compilers and have always wanted to have
one, we are going to make some special
deals on this Compiler in the hopes of
getting a lot of people interested in
it. The Compiler is available for all
0SI systems for $14.95. That is
incredibly cheap. Furthermore, if
anyone makes an addition to the Compiler
which we can then pass on to other
users, then will receive an immediate
refund for $14.95 and receive an
AARDVARKE Gift Certificate for between
$25.00 - 100.00 depending upon the
significance of the addition to the
Compiler. The basic idea is to get a
lot of people interested in and working
on a Compiler.

18

We've also taken off in a new direction

at Aardvark and have come up with a

series of programs which I consider to
be outstanding in their field. AARDVARK
is finallv in business. I've had a

personal complaint for a long time that
almost al! business software for small
computers was designed to be used by

General Motors. It"s always double
entry, highly confusing and difficult to
use. It normally requires a Bookkeeper
or Accountant to set it up properly. It
also seems to always be designed to run
on at least a C20EM or C3C.

I"m finally getting around to
about it. Aardvark now
publishes a series of programs designed
for the Small Businessman. It was
designed with the guy in mind who has 4
to 15 employees, who grosses less then
10 million dollars a vyear and doesn’t

Well now
doing something

want to have a full time accountant on
hie staff. This stuff is extremely easy
to use, extremely clear and we made it

very very, cheap.
The program cluster consists of a
General Ledger program which records all
aof the transactions, does a Cash account
balancing, & Frofit-Loss balance and
provides information for a BRalance
Sheet. The General Ledger program also
has a neat little depreciation package
which would be a good program by itsel+f.
You enter in the equipment, the date
you got it, its value and its life span
and the computer automatically figures
the depreciation, stores it in a file,
and enters it in to the BRalance and
Frofit-Loss Sheets when needed.

We also have a Payroll Module that goes
along wits the General Ledger, an
Inventory program, and an Accounts
Receivabl= program. Except for the
Accounts F~ceivable program they are all
interactive. Thats means that one
program will feed another program
information without hand transferring
it. Now the neatest thing is that we
are going to sell the entire package of
a Word Frocessor, General Ledger,

Inventory, Payroll and Accounts
Receivable for $299.95. That's got to
qualify as one of the great give—a-ways
in the Computer World. Maybe nobody
will believe how good they are, because
they are very, very cheap.

We also now have a all Machine Code Word
Frocessor for the BASIC in ROM machines.
We are currently running it on C1P and
sometime in the next couple of days we
hope to get it set up on a C4P and CI1F
with the CiE and C1S ROMs. Its a
fairly simple little word processor, but
it has most or all of the features that
you need for low volume word processing.
We are going to sell it for the rather
unbelievable low price of $14.95. We

haven’t settled on a name for it as I go
to press here but we’ll probably call it
something exotic like the Word Processor
in Machine Code.

REM FLIGHT OF THE MILLENIUM FALCON
REM BY JOHN WILSON

80 VI=540: IFPEEK(S7088) *127THENVI=600
0 POKES7000,2:8P=57089: FOKESF,0:F1=0:06
0SUER1000

100 PRINTTAE(S) "LONG AGOD":PRINT:PRINT"I
N A GALAXY FAR AWAY...

110 FORX=1TO32: PRINT:FORY=1TO&S:NEXTY, X
1 GOTO680

120 M=0:W=32:D=2: SH=23
P31 8=53903:1 L=64: CH=300
130 C=53760:Ce="SHIF DAMAGED": TU=03:N=0:
K1=3 K2=5: K3=1: BL=32

140 O=1:TH=Z:ME(1)=111:ME(2)=79:ME(3) =2
26

150 IFVI=S40THENIOO

160 LC=32:W=28:M8=54115:5=53551:C=53478
tK1=252:1 K2=250: K3=254

J00 POKES,SH:FORX=0TOD: POKEMS+WXRND (Q) ,
ME (RND¢0) XTH+0) s NEXT

310 POKES, BL:P=PEEK (K) : IFP=K2THENS=S5-0
320 IFP=K1THENS=S+0

330 PRINT:PRINT: IFFEEK (S) < >BLTHEN3&O
340 SC=5C+0: IFSC=CHTHEND=TH

350 GOTO300

I60 IFNTHENSQO

I70 TU=TU+0: IFTU>THTHENN=0

280 FPOKESF,250:FORX=1TOLEN(C%) : FOKEX+C,
ASC (MID$ (C$, X, 1)) :NEXT

390 FPOKESF,0:GOTO300

S00 Y=5-3%L:POKES,32: FORX=1T06b

S10 POKEY+RND (8) ¥6+INT ((RND(B) X&)) %L, 12

60
70

2: K=57100: ME=5803

. 3+RND (8) ¥Z0

S20 POKESF, 100+RND (8) ¥100: NEXT: POKESF, O
S30 FORX=1T0O999:NEXT:GOSUR1Q0Q0

540 PRINT"YOUR SHIP IS DESTROYED":FORX=
1TO999: NEXT

S350 GOSUEL1Q00:PRINT"THE EMPIRE HAS WON!

560 IFF1THENPRINT:PRINT:PRINT" AGA
IN' o

570 FORX=1TO32:PRINT

580 FORY=1TO80:NEXT:NEXT:PRINT:PRINT"SC
ORE: "3;SCX10

590 PRINT:PRINT: INPUT"TRY AGAIN";AS$

600 IFASC(A$)=B9THENTU=0:SC=0:N=0:F1=1:

GOSUER1000:GOTO120

610 GOSUR1000:PRINT"MAY THE FORCE BE WI
TH you"

620 IFSC<I00THENFRINT: PRINT:PRINTTAE(7)
"YOU NEED IT"

630 FORX=1TO32:FRINT:FORY=1TOB80:NEXT:NE
XT:POKES7000, 1: END

680 PRINTTAR(&) "THE FLIGHT

6720 PRINT"OF THE MILLENIUM FALCON":FRIN
T:PRINT

700 PRINT"YOU ARE FILOTING THE

710 PRINT:PRINT"MILLENIUM FALCON THROUG
H

720 PRINT:PRINT"AN ASTEROID FIELD TRYIN
G

730 PRINT:PRINT"TO ESCAFE THE EMFIRE

19

740 PRINT:FPRINT"FORCES.THIS IS YOUR ONL
Y

730
755
760

PRINT: PRINT"MEANS OF ESCAFPE.SEE HOW
PRINT: PRINT"LONG YOU CAN LAST!!
FPRINT:FRINT:PRINT"LEFT SHIFT - LEFT
770 PRINT:PRINT"RIGHT SHIFT — RIGHT

780 PRINT:PRINT:FRINT"HIT SHIFT KEY TO
START"

790 I=PEEK(57100): X=RND(8): IFI=1THENGOT
0790

800 GOSUR1000:GOTO120

1000 IFVI=600THEN1030

1005 REM CHANGE SCREEN CLEARS FOR DIBK
SYSTEM. SEE LAST YEARS

1006 REM ARTICLE ON FAST SCREEN CLEARS.
1010 A=PEEK (129):B=FPEEK (130) :POKE129, 19
2:POKEL130,215: S¢=" "
1020 FORB8=1T0&62:8¢$=8%+"
A:FOKEL1Z0, B: RETURN

1030 A=PEEK (129) : B=PEEK (130) : FOKE129,0:
POKE130,212:5%=" "

1040 FORX=1T07:5%=8%+"
:POKEL30, B: RETURN

":NEXT:POKEL29,

"INEXT:POKEL29,A

4 REM WRITTEN BY JOHN WILSON

5 REM FOR C1,2,4F 5/1981

& REM A TWO PERSON BAME

10 VE=540: IFPEEK (57088) »128THENVE=&00
20 GOSUE1000: POKES7000, 4: PRINT"ANTI-AIR
CRAFT ARTILLERY":PRINT:PRINT

30 PRINT"DIRECTIONS ARE SIMPLE-":PRINT:
PRINT

40 PRINT"LEFT GUN USE KEYS 1,2,3":PRINT
"RIGHT GUN USE N,M,<":PRINT

S50 PRINT"KEY 7 STOPS THE GAME.":PRINT
60 PRINT"THE HIGHER THE PLANES":PRINT"A
LTITUDE THE GREATER THE

70 PRINT"SCORE.":PRINT:PRINT"FIRST PLAY
ER TO REACH"

80 FPRINT"100 POINTS WINS.":PRINT: INPUT"
READY TO START";S$

90 CB=8:GOSUR1000: SP=57089: POKESP, 03 OF =
40963 POKES7000, &

100 CO=53376:R1=239:L1=237: W=32:LC=641K
=57088: P1=4:P2=128: B=32: TA=6

110 O=1:B0=46: TW=2: FORX=0TD&: READK (X) :N
EXT: IFVB=S40THEN150

120 CO=53284:LC=32: W=25:P1=251:P2=127:F
ORX=0T06: READK (X) 1 NEXT: TA=1

150 BL=CO+25%LC:FORX=0TOW: POKEX+EL, 1353
NEXT:LE=CO+2%¥LC:RC=LE+W

160 IFVR=S40THENFORX=0TOSXLC: POKEEL+OF+
X,4:NEXT

170 X=(BL-LC)+INT (W/2) : RG=X+B8:LB=X-9: PO
KERG, 243: POKELG, 246: LD=3%LC

180 GOSUBRS10: GOSURS60: POKERF, R1: POKELP,
L1:Mi=—1-LC:M2=1-LC

190 POKES30,1:CR=0:CL=0

200 POKEKE,P1:P=PEEK (KE): IFF 1 THENGOSUR4
00: GOTO230

210 FORX=1TO10:NEXT

220 IFP=K (0) THENF1=0:F I=RG+M1: RM=M1%3: 6
OSUR&00: RE=RG+M1: GOTO250

230 IFP=K (1) THENPOKERG,243:M1=—1-LC

240 IFP=K(2) THENPOKERG, 242:M1=~LC

250 POKEKR,FP2:P=PEEK (KB) : IFF2THENGOSUE4
50: GOTO280

260 FORX=1T08:NEXT: IFP=K (6) THENB4O

270 IFP=K(3) THENF2=1:FI=LG+M2: LM=M2¥31 6
OSURGO0: LB=LG+M2: GOTOI00

280 IFP=K (4) THENPOKELG, 245: M2=~LC

290 IFP=K (5) THENPOKELG, 246: M2=1-LC

300 POKERP, B: RP=RP-RF: POKERP, R1:CR=CR+R
F: IFCR>WTHENGOSUBS0O

Z20 FOKELF,B:LP=LP+LF:FOKELP,L1:CL=CL+L
F: IFCL *WTHENGOSURSSO

Z90 GOTO200

400 POKERE, B: RB=RE+RM: IFRE<COTHENF1=ZE:
RETURN

410 P=FEEEK (RR) : @1=FEEK (RB+0)

420 IFR< *RORO1 < *BTHENGOSURLSO: F1=ZE: RET
URN

470 POEERE, BO: RETURN

450 FOKELE, B: LB=LE+LM: IFLB<COTHENF2=ZE:
RETURN

4460 O=FEEK (LR) : @1=PEEK (LE+0)

470 IFQ<>BORO1< >BTHENGOSUB&L70Q:F2=ZE:RET
URN

480 FOKELEB,BO: RETURN

499 REM BLANKES FLANE CHOOSES FLANES ALT
. ¥SFEED

S00 POKERF, EB: CR=ZE

510 RL=INT (RND(0) %5) : IFRL=LLTHENS10

515 RF=0: IFRL>0THENRF=TW

520 RP=RC+RLXLD:RETURN

=550 POKELF,B:CL=ZE

560 LL=INT (RND(Q) ¥5) : IFLL=RLTHENS&0

565 LF=0: IFLL>0THENLF=TW

570 LP=LE+LLXLD:RETURN

&00 POKEFI+O0OF,2: FORX=224T0O226: POKEFI, X2
FOKESF, Xs NEXT

610 FOKEFI,32:POKEFI+O0OF,8: POKESF,0:RETU
RN

650 IFR=R10RE1=R1THENRS=RS+10-RL:GOTO73
Q

660 RE8=RS+10-LL:GOTO700

670 IFO=R10RO1=R1THENLS=LS+10-RL:GOTO73
Q

AARDVARE TECHNICAL SERVICES, LTD.
2352 South Commerce

Walled Lake, MI 48088

(I13) 669-3110

680 LS=LS+10-LL:60TO700

700 FPOKELF+0F, TW: FORX=25TO32: FOKELF, Xz F
OKESF, 200-X¥TW: NEXT

710 FOKESF, ZE: POKELF+0F, CE: GOSURSS0: GOT
07350

730 FOKERP+0F, TW: FORX=25TO32: FOKERF, Xz F
OKESF, 125+XXTW: NEXT

740 POKESF, ZE: FOKERF+0F, CE: GOSUESOO0

750 IFRS:>990RLS>992THENSOO

760 FPRINTCHRS (13) TAR(TA) " "L&"
TRGH "y
770 RETURN

800 FORX=1TO1000:NEXT:GOSUR1000: IFRS LS
THENS$="RIGHT": GOTO820

810 S&="LEFT"

820 PRINT:FORX=1T0O25:PRINTTAR(X)"THE "S
$" GUNMAN WON'!":NEXT

830 INFUT"TRY AGAIN";:S$: IFASC (5%)=89THE
NRS=0:LS=0: GOSUR1000: GOTO150

840 POKES7000, 1:POKES30, 0: GOSUR1000: END
900 DATA4,8,2,64,128,32,2,251,247,253, 1
91,127,223, 253

1000 IFVE=600THEN1040

1010 X=PEEK (129) : Y=PEEK (130) : POKE129, 19
2:FOKE130, 215: S%=" "

1020 FORI=1T062:S$=5%+" ":NEXT:FOKE129,
255: POKE130, 231 : R$=CHR$ (CR)

1030 S$=R$:FORI=1T062: S$=8%+R$: NEXT: POK
E129, X: POKE130, Y: RETURN

1040 X=PEEK (129) : Y=PEEK (130) : FPOKE129, 0O
POKE130,212: S$=" ";FORI=1T0O7

1050 S$=8$+5%+" ":NEXT:FOKE129, X: FOKELS
0, Y:RETURN

BULK RATE
U. S.POSTAGE

PAID

WALLED LK.,MI.
Permit No. 5

20

