(

v> AARDVARK JOURNAL

APRIL1982 VOL.3 NO.1

¥k%k INDEX %xx

ARTICLE PAGE #
BEGINNERS CORNER — PEEKS AND POKES . 1
RETRACTION TO STEVE GALE..scvvuuass 2
DISK BUFFERS, WHAT ARE THEY?.usu...a.2-6
HIDING MACH. LANG. ROUTINES...:uvss.. &

SAVING ROM BASIC PROGRAMS ON DISK.. 6&-7
BASIC PLUS (0OSI CiP) P. Townson...../—8

SCREEN PRINT by J. Pric@iicecansessaB8-9
USING VIDEO MOD II ON DISK SYSTEMS.9-10
OFP-CODE GENERATOR, C. Hepner......11-12

JOYSTICK INTERFACE by T. Mahler...12-13
R8232 & 110 BAUD MODS FOR 08I C4F. 14

PROGRAM FOR CIRCULAR MOTION....... 14
NUMBER CONVERTING by B. Akins..... 14
BEGINNERS CORNER CONT ' DavssssesnssalS—16
DELAY BREAK KEY by J. Seybold..... 16
FIX FOR ALIEN RAIN...:veesesesseasas 16
PERSONAL NOTE.cssenannanonaassnena 16
RUBIK’S CUBE SIMULATION.wssvesss 16-17
ANIMAL GAME by Gary Kaufman....... 18
FOR SALE. .. sveeununnsnncnnnnsnns .. 18
AARDVARK RETURN POLL.+suwesws assess 19

THE BEGINNERS CORNER
PEEKS & POKES

PEEKS and POKES look a lot more
complex and & lot more difficult to use
than they really are. Part of the
problem is that the normal explanation
in the manual is relatively (turse) and
uninformative. Most BASIC manuals say
something in the order of:

PEEK (I) Returns the decimal value of
the specified memory or 1/0 location.
(decimal) Example: X=PEEK (741) checks
to see if LIST is enabled (746 indicates
that is is enabled).

FPOKE I,J Loads memory location I
(decimal) with J (decimal). I must be
between 0 and 655346 and J must be
between © and 2855. Example: 10
POKE&4256, 255 loads FBOO with FF (hex).

That certainly doesn't sound very
impressive, does it? However these are
two wsimple concepts that have an awful
lot of handy uses. All you have to
remember in the way of definition is
that when you PEEK a location in memory,
you get back whatever number is

actually stored in that memory location
and that when you POKE & memory location
you force the machine to place a certain
number in a given location. What do you
mean whats it good for? There are about
F reasons why PEEKing and POKEing is
extremely handy for computerists.

The first thing that makes PEEKs and
POKEs handy is that the people who wrote
the BASIC language had to put & lot of
things in the RAM. For instance the
number of nulls that the computer puts
on the end of a line of print varies
fROM 0 to 255. Since that number has to
vary, they couldn’t very well put the
value in & ROM someplace. Therefore,
for this and a lot of other values,the
BASIC language is told to look in &
memory location where it will find the
value to use. In this case, the number
of nulls that you put on the end of a
line is stored in location 13 in basic
in ROM machines and in location 21 in
65D.

Now the reason you care about that is
that the people who wrote the BASIC
never figured that you might need more
than 8 nulls at the end of line. They
always assumed that we would use
expensive printers or very good printer
interfaces. Therefore, if you tried to
put in & number like 25 for the number
of nulls in BABIC, (NULL 25) you would
get back an FC error. Unfortunately,
unforseen by the writers in BASIC, some
of us use selectrics and some of us use
pieces of antique equipment. We can
often need as many as 80 nulls at the
end of a printed line in order to get
that slow carriage back. Also, when we
use high speed cassette interfaces (such
as 1200 and 600 baud), we often have to
add a lot more nulls on the end of BASIC
line to give the machine time to process
the BASIC as it goes back into the
machine. It comes down to the fact that
we can circumvent the original intention
of the writers of BASIC by directly
poking a higher number into location 13.

By bypassing the null command and
executing "POKE13,80" we can make this
system put 80 nulls at the end of every
printed line. In this and a lot of
other ways we can expand beyond what the
programmers envisioned when they set
this system up.

Cont'd Pg. 15

RICHARD TRETHEWAY, MINN., MN

Dear Rodger:
With regard to my letter that
appeared in the last Aardvark Journal.

Let me publicly apologize to Mr. Steven
Gale. I did not mean to hold him up to
ridicule. When I wrote the letter, I

wrote it to
for direct publication,
way of knowing that since I didn’t say
S0. It was my hope that you would
publish a correction or addendum and not
my letter, or I certainly wouldn’t have
sent in the hardcopy stating "THE

vou and I did not intend it
but you had no

ARTICLE IS BALDERDASH". I again
apologize to Mr. Gale and to your
readers. I hope vyou will print this in

the next issue.
Sincerely,

STEVEN GALE, SHAKER HTS, OHIO

Dear Editor,

I almost went into shock after
reading Mr. Trethewey’s letter regarding
my article on 65D V3.3. There has been a
misunderstanding that needs to be
repaired. The intention of the article
was not to take potshots at 0OSI. I am
very optomistic about the DOS and I
thought that
good review has a balance of good and
bad features. My article was about
three-fourths on the positive side and
one fourth on the negative.

I stand behind ALL of the criticisms
made in my review. When indirect files
are not used, <CTRL> ’X’ does crash the
system. Because "X’ is next to ’C’, I
have crashed many times by accident. A
better letter would have been *I’ (for
indirect). Mr. Tretheway must not have
read his manuals. Location 9976 is
listed as disable ":" terminator. If
you add this poke to his sample program,
it crashes when an open command is
given. Loading and unloading the R/W
head is not good for the drive. Poke
9976 and shorten the life of your disk
drive!

Insulting my capability as an author
and reader was not the right way to have
more information about the DOS available
to the public. If vyou read my article
carefully, vyou will see phrases like
"minor problems", "decoder is great",
"utilities...are great", "manuals are
great", "much improved", etc. I was not
writing a 10 page article, so I couldn’t
have a whole paragraph on each utility
and reference manual. I"'m glad that Mr.
Tretheway made those features clear.
Aren’t we both on the same side?

Sincerely,

showed in the article. A

DISK BUFFERS, WHAT ARE THEY?
by Don VanSyckel

The prupose of a disk buffer simply
stated is to buffer data which is going
to or coming from a disk. Alright, so
what does this mean? In 0SI disk
systems, the diskette subsystems are
dumb subsystems or peripherals. This is
evidenced by the fact that the main
processor actually operates the drives
via an Asynchronous Communication
Interface Adapter (ACIA/48%50) and
Peripheral Interface Adapter (PIA/&821).
With this in mind,some background is
required in order to understand why
things are structured in the manner they
are. Any diskette has data written to
it or read from it in a continuous
stream. As such, the diskette drive can
not directly locate a particular byte or

record on a floppy diskette. On many
systems, and 0SI in particular, the
diskettes are soft sectored. This

basically means that the diskette drive
can only find one given point on any
track with its hardware. This point is
located by using the index hole whose

status comes to the CPU as a discrete
input via the 4821,

Let’s examine reading from the
diskette first, when the CPU is queued
by the index hole, it initializes the
6850 to look for the data stream. When
the 6850 has a character, the CPU reads
it and the 68350 looks for and receives
the next character and soc on. Now, the
CPU is receiving data from the diskette.

The data stored on the track is not all
user data but also includes formatting
data. I do not intend to explain
formatting here for it is user
transparent. When the user data comes to
the CPU, the CPU can do one of two
things with it; either look for and save
the specific data which is required or
save all the data and let another
routine examine it and extract the given
data that is required. The later is
much less complicated and has the
advantage that all the data on a given
diskette track may be examined at will,
with only one diskette access. As
opposed to the first method where
separate diskette accesses would be
required for each piece of information
required even if it was on the same
track as the last accessed data. So
where should the CPU save the data? In
the disk buffer, of course.

Writing to the diskette is just the
reverse. The CPU waits to be queued by
the index hole and then it pauses to
allow a gap. The CPU then writes all
formatting and user data to the
diskette. The information for a
particular track sector is all written
at one time so all of the user data must
be available when this writing operation
begins. Where should the user’s program
store this information? In the disk
buffer.

S—

The disk buffer is a block of memory,
usually RAM, where the CPU writes data
to or reads data from during a diskette
read or write, respectively. The disk

buffer can, in the general case, be
located anywhere in memory and be any
size. In a specific case, the disk

buffer may not reside where there is
something else in memory already, such

as your program, Disk Operating System
(HOs), stack, variables, etc. For a
diskette read, the disk buffer must be

RAM: however, for a diskette write, the
disk buffer could be ROM and/or RAM.
51 has also restrained the simple disk
buffer to be a multiple of 256 bytes,
one page: up to a total of 13 pages on

one track if one sector is used or
twelve pages total if two or more
sectors are used on a track. When more

than one sector is used the diskette
drive handler routine leaves a gap after
each of the sectors so that the
beginning of the subsequent sectors can
be located for reading and rewriting.

The DOS is the program which actually
handles the reading from and writing to
the diskette. The CALL command is used
to read and the SAVE command is used to
wirite., In the general form these
commands are:

CA MMMM=TT, S
SA TT,S=MMMM/F

where:

MMMM=4 digit hexidecimal number which is
the address of the first location of the

disk buffer, leading zeroes must be
included (<$1000)
TT = 2 digit decimal number of the

diskette track, leading zeroes must be
included (01-09)

S = 1 digit hexidecimal number of the
sector on the specified track

P = 1 digit hexidecimal number
indicating the number of pages to write
to the diskette.

Let's examine each of these two
commands in detail. CALL command
parameters are passed to the appropriate
DOS routines. The DOS commands the
diskette drive to select the specified
track, the track is read to locate the
beginning of the sector, and the data is
read from the diskette and stored
sequentially in the disk buffer. In
this case, the buffer must be RAM, but
it could be special function RAM such as
the video display or color control on
the 081 540 board. It should be noted
that the user can not specify how much
data is to be read. The DOS will read
the entire sector specified in the CALL
command. For example, if the command CA
DOOO=40,1 were executed to Ffill the
video memory with a picture and sector
#1 of track #40 were 13 pages long, the
DOS would write data out to $DOOO thru
$DCFF which would destroy anything in
its path from $DB0O0 thru $DCFF. If
sector #1 of track #40 were 8 pages
long, then it would exactly fill all of
videao memory.

The SAVE command parameters are
passed to the appropriate DOS routines.
The DOS, as in the CALL command, selects
the specified track, the track is read
to locate the beginning of the sector
specified, and the data is stored
sequentially onto the disk. The disk
buffer which contains the data is
usually RAM but could be an EFROM, the
system monitor FROM, or video memory.
For example, if you use some device
other than the video monitor (device #2)
as the system console you could create a
picture on the monitor and store it on
diskette for later recall. The command
SA 45, 1=D000/8 would save the 8 pages of
video memory from $DO0OO thru $D7FF. If
you changed the picture slightly and
saved it also and repeated this
procedure several times, a small BASIC
program couwld be used to CALL them to
the screen creating an animated effect.

Not that general disk buffers have
been discussed, let’s examine the
specific disk buffers which the DOS and
BASIC use. These are as follows:

USED BY INSTRUCTION

DOs .OAD

DOS FUT

BASIC DISK. OPEN X

BASIC DISK CLOSE x

¥ for both DIRECT and SEQUENTIAL files.

In the DOS commands LOAD and put, the
DOS routines which perform these
functions essentially supply the inputs
to the CALL and SAVE commands
respectively.

In addition, CALL and SAVE are called
multiple times if necessaryy once for
each track which is in the file. 081
BASIC or assembly language source files
begin at 43179, The first 5 bytes of
each file are listed below:

MEMORY ADDRESS FUNCTION
12,665 $3179 LO\ /S0URCE START
12,666 $317A HI/ \ADDRESS

12,6467 $317B LON /SOURCE END
12,668 $317C HI/ \ADDRESS

12,669 317D # OF TRACKS RE®

12,670 $317E START OF USER AREA

Let’s examine what happens when a file
is loaded as called by the command:

LO 48

The LOAD routine evokes the CALL routine
passing it the information:

CA 3179=43,1

After the track has been loaded into
memory, the LOAD routine determines is
there is another track. If there is
then the CALL routine would be evoked
again with the information:

CA 3D79=46,1

Note here that the LOAD command had to
determine that the first track called
has 12 pages on it.

This procedure is continued until the
entire file is in memory. The LOAD
command then passes control back to the
calling routine. If the LOAD command:

LOAD "FILE"

had been used, where "FILE" is a file
name, then an extra routine must be
called to read the diskette directory to
ascertain what track the file begins
on.

The PUT command functions in a
similar manner. The command: PU 45
would cause the PUT routine to call the

.8AVE routine passing it the information:

SA 45,1=3179/C. After the track has
been written to the diskette the PUT
routine determines if there is another
track. If there is, then the SAVE
routine would be called again with the
information: 8SA 46,1=3D7&/C. The PUT
command has the number of pages to place
on a track stored in DOS.

The other special disk buffers which
were listed were those used by BASIC for
devices #6 and 7. If the standard 08I
method is employed to use these buffers
then the "CHANGE" program must be
employed to create them. If one buffer
is to be used it is device #4 and if two
are to be used then device #7 is also
used. There is a discussion in the 08I
manual about creating these disk buffers
and how to move vyour BASIC program
around if vyou have already entered the
program source code and then remember
that you need one or more disk buffers.
This point seems rather confusing to a
number of people. The problem lies in
the fact that O0SI did not give
themselves enough "hooks" in their BASIC
program file or in the file header
itself and therefore the user must do
manual operations to set up disk
buffer(s).

As stated before, the BASIC program
file begins loading at $3179 and the
user has the memory from this location
through the end of memory to work with.
If the user's program needs disk I/0
then the user must provide memory for
the disk buffer(s) out of his allocation
from $3179 and up. 0SI chose to have
the disk buffer(s) reside immediately
after the 5§ byte file header and before
the BASIC source code. For example, if
one disk buffer of the normal 0SI size
of 12 pages is needed, running the
CHANGE program and telling it to leave
12 pages and no extra bytes will cause
location #3179 and $317A to be loaded
with $7E and $3D, respectively. These
are the first two locations of the
program file buffer which contains the
starting address of the BASIC source
code. Note that these locations
usually contain $7E and $31,
respectively, or the location of the
sixth byte of the program file buffer,
when disk buffers are not used in the
program. The BASIC interpreter looks at
$3179 and $317A to determine where the

BASIC source code starts. Since the
disk buffer(s) are tucked away here, the
program, when called, can use memary
from the end of the BASIC source code
through the end of memory for variables
as it usually does. The drawback is
that when the program file is stored,
everything from the first byte of the
file header through the last byte of the
BASIC source code is saved. If there is
a disk buffer(s) resisent in there it
also is saved and takes up a (two)
track(s) on the disk.

An alternative to using these
standard O0SI buffers is to assign your
own buffers. This is very easy to do
with one or two lines at the beginning
of the BASIC applications program. The
appropriate information must be entered
into the locations listed below.

MEMORY ADDRESS FUNCTION

294 $0126\ /FIRST BYTE OF
295 $01277 \ BUFFER DEVICE #6&
296 $0128\ /LAST BYTE OF

297 #0129/ \BUFFER DEVICE #6
428 $01AC\ /NEXT INPUT BYTE
429 $01AD, \DEVICE #6

451 $01C3\ /NEXT OUTPUT BYTE
452 $01C4/ \DEVICE #6

302 $012E\ /FIRST BYTE OF
303 $012F/ \BUFFER DEVICE #7
304 #0130\ /LAST BYTE +1 OF
305 %0131/ \BUFFER DEVICE #7
509 $01FD\ /NEXT INPUT BYTE
510 $01FE/ \DEVICE #7

534 $0216\ /NEXT OQUTPUT BYTE
535 %0217/ \DEVICE #7

For example, if vyou have a 48K
system, vyour RAM is located from %0000
thru $BFFF (0 thru 49151). Let’s
create two buffers in upper memory
fordevices #&6 & 73 each being 13 pages
long (3328 bytes). It does not matter
to the computer which buffer is where,
80 I choose to put device #&6 at the very
top and device #7 just below it. The
folowing code could be greatly
streamlined: however, it is presented
here in this fashion to provide an
explanation of the process.

10 MP=48%4)POKE296,MP1POKE297, 01 POKE294,
MP-131 POKE295,0

20 POKE428,MP-13:POKE429,0:POKE4S1,
MP-13: POKE4S2,0

30 POKE304,MP-131POKE305, 01 POKEZ02,
MP-26: POKE303, 0

40 POKES09,MP-2461POKES10, 01 POKES34,
MP-261POKES35, 0

S50 POKE132,255:POKE133,MP-271POKEBY40,
MP-271CLEAR

In line 10, "MP" is the maximum memory

page +1. The first two pokes set up the
end address +1 for device #6 buffer and
the last two pokes setup the start

address for the device #6 buffer. The
paokes in line 20 initialize the input
and output pointers for device #é

bt fer. The pokes in line 30 & 40 do
for device #7 what the corresponding
pokes in line 10 & 20 did for device #6.
Line S50 loads the location of the last
byte of RAM available to BASIC (LOC 132
& 133 and the maximum memory page (LOC

8R60) . The CLEAR causes BASIC to update
its pointers for end of memory, from
locations 132 & 133, The maximum page

is initially loaded by the system of
power up by testing the memory and need
not really be changed for the program to
worlk. However, if your program bombs
and you perform statements in the BASIC
immediate mode, the values in locations
132 & 133 get reset sometimes. It you
GOTO back into the program and the
pointers have been updated, the RASIC
interpreter will write string variables
aover the disk buffers.

Now that the actual data transfer and

storage locations have been covered,
let’s examine the manner in which BASIC
uses a sequential file. Executing the

following command causes DOS to read the
first track of the file into the disk
buffer.

DISK OFEN,6&6,"FILE"
I+ the program reads from the file with
an INFUT#&, the DOS returns the
characters from the beginning of the
file thru the first carriage return
($0D) character. The next and
subsequent input statements return the
characters from after the previous
carriage return character until the next
one. This process continues as the
user’'s program does inputs until the DOS
reads the last character in the disk
buffery then the DOS reads the next
track in to the disk buffer, starts at
the beginning of the buffer again, and
finishes reading the characters thru the
carriage return character. This
continues thru the end of the file at
which time DOS will give you an error
message if you attempt to read past the
and of the file.

The process of writing to a
sequential disk file is similar to
reading. The data written out is
entered into the next location in the
disk buffer and & carriage return
character is inserted. When the last
location in the disk buffer has been
written into, the DOS writes the disk
buffer to the diskette and places the
rest of the current message in the disk
buffer starting at the beginning again.

It showld be pointed out here that
BASIC terminates its input strings with
a carriage return and ignores
miscellaneous non-printable characters
such as line feeds. The BASIC FRINT
statement always terminates with a
carriage return and line feed. The line
feed can be eliminated by the following
procedure:

10 CR$=CHR% (173)

100 PRINTH6, "USER DATA";CR%3 : PRINT#H#9

The CR$ variable in the print statement
puts a carriage retuwrn in the disk
buffer, the "3" after CR$ causes the
print statement to be extended or
continued, and the print to device #9
finishes the print with a carriage
return and line feed to the null device

(bit bucket). This one byte per data
item may or may not be worth while. If
your data is a series of 3 digit numbers

for example this trick will reduce each
data entry from S bytes (3+CR+LF) to 4
byte (3+CR) for a 207% space savings or a
28% increase in data storage.

After all operations to a give file
have been done the file is closed with
the command: DISK &,CLOSE. When vou
close a sequential file vou have written
to, DOS puts an end of file marker after
the last data written by the user and
then forces a write of the buffer to the
disgh. If you have been reading, the
disk buffer is only written out. The
DOS routines could be upgraded
considerably to make them more
intelligent as to just when disk 1/0 was
needed.

The use of direct (random) access
files is very similar to the use of
sequential files. However, in this
case, the program indicates which record
is to be read; DOS calculates what track
it is on and reads that track into the
disk buffer. I don’t care for the (08I
direct file handling capabilities at all
and obtain much better performance both
in the number of disk accesses and in
data density from a subroutine package
written in BASIC which handles the disk
with CALL and SAVE commands. Once
again, the trick of circumventing the
line feed character per item in each
record can be saved. For example, in one
of my applications there are 14 items
per record and I needed records 114
characters long. At this size 29
records fit on one track. If the normal
print had been used which included the
line feed character, records 128
(114+14) characters long would have been
required and only 26 records would have
fit on a track. The extra 3 records per
track add 228 (3X76) records to the
capacity of the disk. (An article about
user control of direct files was printed
in Vol 2 #3 p.10 of the Aardvark
Jjournal.)

If the standard 08I disk routines are
used for random files, then the input of
output to a particular record, say 8, is
placed between the following
statements.

DISK GET 8

DISK PUT

The GET command loads the proper disk
track into the disk buffer and sets up
the input and output pointers to the
address of the first byte in the buffer
of the referenced record. Random files
need to be closed also.

In conclusion, the disk buffer, in
general, is a section of RAM which must
be allocated out of the section of RAM
which is in the user’s area. The buffer
is only a holding area which can be
either read from or written to at will.
It is structured in this manner to
minimize disk accesses and increase
execution speed.

HIDING MACHINE LANGUAGE ROUTINES
by Don VanSyckel

I have read several methods of
loading machine language routines for
use with BASIC programs. However, the
method presented here for disk users
requires the routine(s) to be loaded by
the user or program only once and
requires little effort to do it then.
First write and debug your routine using
the Assembler and Extended Monitor. When
the routine executes properly, assemble
it to upper memory with an offset such
that the origin is really $317E
(12,4670). Save the code in a track
sector which is only the required number
of pages to contain the code.

When you begin to write the EASIC
program run the "CHANGE" program first.
When asked about "EXTRA RBYTES" before
BASIC, enter the size of the disk track
sector that the assembly language code
is stored in (256 X # of pages). After
exitting from the "CHANGE" program, use
the CALL command in the DOS KERNEL to
load the disk track sector containing
the machine language code to %317E.
When you PUT your BASIC program, the DOS
will save everything from %3179 (12,665)
to the end of the BASIC source code.
The first Ffive bytes are the disk file
header and from $317E to the end of
memory is the user’s area.

The BASIC program can call the
routine(s) in either of two ways, either
with USR or GO. Using the USR function
one parameter may be passed to and one
back from the assembly language
routine(s). The USR requires some set up
pokes so BASIC knows where the assembly
language routine starts. If only one
routine is called the pokes only need to
be done once. However, if more than one
routine is called then the pokes must be
done before each USR. The GO, from the
DOS KERNEL, can be used directly as
DISK!"GD 317E" although no parameters
can be passed directly. However, if
needed BASIC can poke numbers into
memory and the machine language routine
can read them there. The ideal place
for this "mailbox" is immediately after
the machine language routine because
there is probably space left over from
rounding up to the next whole page size
when leaving room or if not enough room
is there a few extra bytes can be asked
for initially in the CHANGE program. It
should be noted that the return in the
assembly language routine(s) must be a
RTS8 and that more than one assembly
language routine can be stored together
in front of the BASIC source code. The

entry points for each of the various
routines must be known though. One
other thing which the user must be
careful to do is to clean up the 6502
stack at the end of the routine so that
the RTS returns to the proper place.

HOW TO SAVE ROM BASIC PROGRAMS ON DISK
by Wolfgang EBaer

There are three ways of saving ROM Basic
programs on 08I minidisk:

(1) The ‘"normal" way is to make use of
the cassette recorder. The ROM BRasic
programs are saved on cassette. Then
you type (BREAK) D to start Disk Basic.
After killing BEXECX by NEW you can take
the new program from cassette. Fut the
input on the cassette interface by
FOKEB993,1. This input will end with a
reset to the keyboard if a syntax error
is encountered on tape (as the "OK"
message) . Two things are important: Re
sure you have a clean start of the
listings on cassette, without the word
"LIST" or any garbage because this will
cause a reset. And because Disk Basic
is much slower than ROM BRasic, it will
need more time to chew each line of
Rasic. So make the pauses between the
lines longer before vyou save them from
ROM Basic by FOKEL13,30. If you want to
put & Disk Basic program on tape, do it
by FOKE8S8994,3: LIST line no. and
afterwards POKES8994,2. Or you can
LIST#1, line no. but will have no
listing on the screen. Afterwards, you
can load the program into ROM Basic from
tape.

(2) After starting the disk system by
(BREAK) D, type EXIT. Afterwards, you
can make a coldstart by (BREAK) C. Give
an answer to MEMORY SIZE? The lower 8K
bytes are not used by diskette Kernel,
S0 your memory size is 8192, Now you
can work in ROM BRasic. When your
program is ready to be saved, type
(BREAK) M 2451 G. Now yourein diskette
kernel and can treat the ROM basic
program as if it were machine code. You
will have to save everything from zero
page to the end of the program, as
indicated in $007C. If you find an 1F
in %007C (the highest possible number),
then you will have to use four tracks,
ZK Byte each. Zero page goes to disk by
8A track,1=0000/1 (that is the only
way), the rest of the first two Kbytes
by 8A track ,2=0130/7. If $007C is
higher thanm 07, you go on: SA second
track, 1=0800/8 and so on. The program
comes back from disk by CA 0000=first
track, 1 CA 0130=first track,2...CA
1800=fourth track,1. Because all
pointers and vectors have been saved
together with the program, vyou can now
go directly to Warmstart. If you do any
chages to the program while editing, be
sure to copy everything including zero
page back on disk.

(3) The ROM Rasic program starts

normally at #0301. This is indicated at
#0079 and $007A. If you change these
locations together with the variable=end
of program pointers at $007B and $007C,
you can set that way vyour ROM Basic
program to work on the disk Basic

program that starts at $327E, with the

workspace pointers at $3279..327C. If
you have a program on disk, vouw can
reach it by ROM Basic with the follcwins
commands:

(BREAK) D to get Disk basic to work.
(BREAK) C to start ROM Basic. Give an
answer to MEMORY SIZE? I vyou have 32
kEbytes and 2 kbytes of USR routines at
the top, your memory size is 30720,
Otherwise, the memory test would destroy
the disk kernel and the program you want
to work on. Now you take the machine
code monitor and copy the locations
$T279..327C to $0079..007C. You can do
this by hand or by this machine code
utility:

AZ O3 LDX #%03

BD 79 32 LDA $3279,X START
P8 79 STA 479,X

CA DEX

10 F8 BFL START

4C 74 A2 JIMP WARMSTART

In my USR package starting at $7800,
this program is at $7E1E. So I type:

(BREAK) M 7ELE G

I¥f vyou have taken & Basic program from
disk, it must appear now and can be
used. Vice versa, a new ROM BRasic
program can be transferred to disk
system by copying the locations
$0079..007C to $3279..327C:

AZ QO3 LDX #$03

BS 79 LDA $79,X START
9D 79 32 BTA $3279,X

CA DEX

10 F8 BFL. START

4C 3C 22 JIMP EXIT

So because this transfer program is at
$78F1, I type:

(BREAK) M 78F1 G.

It ends with a jump to the disk Rasic
EXIT routine. It makes the kernel
appear by "AX" and display the number of
tracks needed. However, the first time,
it displays nonsense and must be called
again by GO 223C. Disk Basic will not be
ready to work now because it has been
damaged by the Coldstart. First put the
program to disk, then power up again and
recall it from disk. Be aware that the
same tokens are used by ROM BRasic for
LOAD and SAVE as in Disk Rasic for EXIT
anc DISK. If you want to change a ROM
Basic program to run on Disk Rasic, do
not type statements as DISK OPEN #6,A%
because they will not be properly
encoded by ROM Basic. Type instead SAVE
OPEN #6,A%, and later Disk Basic will
translate this into the right keyword. I
want to point out again that it is not
clever to declare disk buffers at the
bottom of Basic, as the 08I CHANGE
utility does. When saving programs on
disk, the buffers will be put on disk
together with the program and by this,
waste one or two tracks. Always space
off the disk buffers at the top of RAM!

BASIC PLUS (08I Ci1F)
by Fatrick Townson, I11.

BASIC PLUS is a machine code routine
designed as an addendum to the Rasic
loaded into pages zero, one and two upon
cold start. It needs to be loaded only
one time, upon power up, and will
remain until power is turned off.
Subsequent cold and warm starts need
only have the vectors re-pointed.

In the past, a variety of utility
routines have been devised to help the
C1P programmer. Most of them require
calling by USR(X), and the locations for
the routines were not standardized to
allow all of them to run at one time.
The program below does this. Once
loaded, any of the special routines for
screen clear, list, port audit, load and
save can be accomplished with one button
control. USR(X) is freed up to do other

jobs. It need not be typed in. Fokes
11,12 need not be pointed at any special
location (except as you wish for vour

own jobs elsewhere).

The program enclosed erases itself
and leaves a poked up machine code in
page two and in a small portion of page
zero. The results are:

CONTROL L to load from tape (exit via
space bar, as usual)

CONTROL Z to Save to tape. (exit via
Control L and space bar, as usual)
CONTROL R to Run program. (exit as usual
= via Control C or normal termination)
ESCAPE KEY to exit from Rasic and audit
activity at the ACIA port.

RUE OUT KEY for instant clearing of
screen {(or scroll window)

LINE FEED to list program, and while
listing, CONTROL 8 to temporarily stop
the listing flow; CONTROL @ to resume
the listing flow. (you may alternate
back and forth between 5/0 as desired)
However, for selective line listing
(e.g. "LIST 100") you must still use the
word "LIST" followed by specifics, since
Line Feed in effects calls for List and
gives CR at the same time, without
allowing specifics to be requested.
Thus, the S/0 feature.

After a warm or cold start: You must
re-position the vectors,as follows: AS
ONE LINE 1IN IMMEDIATE MODE:

FOKES36, 78: POKES37, 2; POKES38, 48

FOKES39, 2. Don’t forget that on some
older model Ci1F machines, the first
command entered after warm start give an
OM Error. So to avoid typing the above
line twice, First enter some dummy
command like Print P.

Although most machine codes offering
utility functions seem to be located
beginning at Hex 0222 (decimal S446) . my
own particular machine has the Aardvark
Edit Rom located (in part) at those
locations. So I have devised the
following program to begin at 560
decimal ~where Aardvark’ s ROM leaves off.

However, the user can place the
routine wherever desired-even in the
high portion of RAM. But the most
logical place is page two (and part of

page zero) since these areas are rarely
used otherwise, and don’t waste any
usable memory (since the Basic program
enclosed washes itself after running).

If the users want to relocate the
program (for example, to begin at Hex
0222) care should be taken to change all
the JSR's, JMP's, etc. to relate

everything to each other. In
particular, lines 150-160 will need
attention. Also, lines é and 170 will

have to be carefully re-arranged.
Caution should be observed in moving the
routine to other locations, since I have
carefully woven them together relative
to the D60-660 area of page two. Many
of these routines were available
elsewhere, quite independent of each
other. The JSR's in particular just
might cause alot of trouble if you break
up (or move) the program.

For ease in loading, you might want
to have the program self start after the
tape has been run. While still in the
SAVE mode after line 200 has passed,
type in the immediate mode, Carriage
Return, Carriage return, POKES1S5,0: RUN
Carriage return. The above added to the
tape will cause the machine to execute
and erase the program as soon as you
have loaded it. If all goes well, you
should then be able to press "RUBR OUT"
and get an immediate screen clear.

The so0 called Fort Auditing Routine
(Escape Key) allows the programmer to
review the contents of a tape (or any
activity at the Back Door) while another
program is operating, without loading
the activity t the port inadvertently on
to the current program. To use it, start
running the tape to be examined, then
hit "Escape'". The characters on the tape
will fill up vyour screen, until the
space bar is hit.

If you don’t like the use of L/Load;
Z/8ave and R/Run, you can change them as
follows: (after program is run). From A
to Z is from 1 to 26. To change load:

POKES?4, XX-Save: POKE&SOQ1 , XX~Runi POKE&22, XX.

Normal values of these locations, of
course, i1is S594(12)3 601(26); &622(18).
Line feed value is 10, which means it
can also be worked by Control J.

BASIC PLUS - A machine code routine
which provides additional control code
features to users of 08I CiP Basic in
Rom machines.

PURFPOSE: When operative, provides user
with Control L to load; Control Z to
Savey; Control R to Rung (RUBOUT) for
instant screen clear; (ESCAPE) to audit
port without loading or disturbing
current run.

CAUTION: BRasic does not load over this,
s0 it does not have to be re-run after a
cold start. But after a cold start or
warm start, you must reset vectors:

POKES36,78: POKES37, 2: POKESE8, 48: POKES39, 2.

b For X equals S60 to &&0

10 Read A:POKEX,A:NEXT

14 REM 560-589 is Control Output S/0
15 DATA72,169,246,141,0,223,169,192,
44,0

20 DATAZ23,208,12,169,252,141,0,223,
169,192

30 DATA44,0,227,208,244,104,76,105,
255,0:REM 589 REM S/@ listings

70 DATA32, 186, 255,201,12,208, 3,32, 139,
255,201:REM 12 is L/LOAD

80 DATAZR&,208,3,32,150,255,201,127, 208,
3,76:REM 26 is Z/SAVE

0
DATA127,2,201,10,208,3,76,181, 164: REM
620 REM 10 is Line Feed/LIST

100 DATAR01,18,208,6,32,119,164,32,194,
165,96:REM 18 is R/RUN

110 REM lines 120-130 for Rubout Key
Screen Clear routine

120 DATA72,169,32,162,0,157,0,208,157,0,
209,157,0,210

130 DATA157,0,211,232,208,241,104,94

140 REM Lines 150-160 Set Input and
Output vectors.

150
FOKEL11,78:POKEL12, 2: POKES34, 78: POKES37,2
160 POKES38,48:FPOKES39,2

165 REM Pokes 216-235 is the Port
Auditing Routine

170 For X equals 216 to 235: Read Y:
POKE X,Y:NEXT

180 DATA169,255,141,3,2,44,3,2,16,9,
32,186,255,32,45,191,24

190 DATA144,242,94

200 NEW:REM No usable memory lost.This
erases itself and leaves a poked up
machine code in paes 2(5&60-640) and a
little in page 0(216-235

TO SELF START, WHILE SAVING TO TAPE, ADD
"CR/CR POKE 515,0:RUN CR"

SCREEN PRINT by John Price

The following is & listing and sample
printout of a "Screen Print" routine
that copies the contents of the screen
to a printer, for an 0SI CI1P. These are
my comments on the program, by line
number .

10. Dimensions an array (Screen) the
size of the screen area to be printed.
Sets upper left & right corners of the
screen area % set X & Y to their initial
values.

20. Starts reading the area of the
screen to be printed & increments X by
1s

30. Peeks the screen location to
determine what is displayed there.

40. Btores the ASCII value of the
character at each location in the
array.

S0. If we have reached the right side of
the screen we go to LN70 if not, continue
to line 460 which takes us to the next

screen location to the right. (LN &0
next)

70. Increments Y by 1 to provide proper
storage in the array. Increments C & D
by 32 to move ws down 1 line on the
screen and resets X to 0.

80. Determines if the program has

reached the bottom of the screen area we
wish to print. If we have it moves to
line 100 which starts the output portion
of the program. If not, it falls thru to
line 90 which returns us to the screen

reading loop.
100, Turns on printer port. (RE232)

110 & 120. Provide X & Y values for
reading array Screen, from left to right
% top to bottom.

130, Sends the proper code (number) to
the printer and screen to print what was
on the screen. If we have read a
complete line (24 characters) the
"Frint" provides a "CR" for the
printer.

160. Shuts off RB23I2 and terminates
program.

The sample run is how the screen (TV
with RF modulator) looked when the
program (minus LN 1,2,%3) was listed
and the program was then run.

The tape has the program on both
sides.

If this is of no use, burn the paper
in your fireplace % find a good use for
the tape.

FROGRAM LISTING

1 REM SCREEN PRINT JOHN PRICE
KNOXVILLE IA
2 REM FROGRAM SCANS VIDEO MEMORY

LOCATIONS THEN PRINTS

3 REM THOSE CONTENTS TO A LINE PRINTER
(WRITTEN 12/15/81)

10 DIMS(24,21):C=53413:D=53437: X=0zY=1
20 FORA=CTOD: X=X+1

30 Z=PEEK (A)

40 S(X,Y)=Z

50 IFX=24G0T0O70

60 NEXT

70 Y=Y+1:C=C+32:D=D+32; X=0

80 IFD:S4045G0TO100

Q0 GOTOZ20

100 SAVE

110 FORY=1TO21

120 FORX=1T024

130 PRINTCHR$ (8(X,Y)) 51 IFX=24THENPRINT
140 NEXT

150 NEXT

160 POKES17,0:END

oK,

SAMPLE RUN

10 DIMB(24,21):C=53413:
D=834371: X=01Y=1

20 FORA=CTOD: X=X+1

30 Z=PEEK (A)

40 S(X,Y)=Z

S0 IFX=2460TO70

60 NEXT

70 Y=Y+1:0=C+32:D=D+32:
X=0

80 IFD:>340456G0TO100

0 GOTO10

100 SAVE

110 FORY=1T0O21

120 FORX=1T024

130 PRINTCHR$ (S(X,Y)) s
IFX=24THENFPRINT

140 NEXT

150 NEXT

160 POKES17,0:END
Ok

USING THE VIDEO MOD II ON DISK SYSTEMS
by Ronald C. Whitaker

One of the hazards of making
modifications to a standard system is
that unexpected incompatibilities may
later appear when the system is
expanded. In my case, I had already
added an 08I &10 Disk Controllerboard to
my CIP and it was up and running Ok.
Then I read about the Video Mod II which
increases the visable display from 24 X
24 to 32 X 32. (It's actually 28 X 32
on my monitor). This sounded like @&
good idea at the time so I ordered plans
for the mod. At that time AARDVARK was
not vyet recommending the mod only for
non—disk systems. I soon received the
plans for the mod and a new S5.40672 mhz.
crystal and made the required changes
and additions to my system. The mod
worked fine on the Ffirst try and I
immediately like the new display. All
was fine until I tried to boot the disk
and it wouldnt. I rechecked all wiring
and found nothing out of place. Next I
plugged into the schematics of the &00
and 610 boards and the video mod and
came up with the following
modification.

The standard time base (about 4.0
mhz) goes to a 16 stage divider chain
formed by UZ0, US?, U0 and Ubl. These
16 outputs are labled CO to Ci15. Each
output in this chain is 1/2 the speed of
the previous one. Thus, CO produces a
clock of 2.0 mhz, Cl is 1.0 mhz and so
on through C13 which produces 60 hz.
These various divided timing signals are
used to drive the reset of the system.
0f particular interest is Cl (1.0 mhz)
which drives the microprocessor and C4
(125 khz) which produces the transmit
clock (TX CLE) for the cassette
interface. Several others are used to
produce the video timing signals.

The Video Mod II works by replacing from pin 37 of U18 (00 input to the

the original crystal with a faster one. microprocessor) and pin 13 of U30 (Ci
This speeds up all of the timing signals output of divider chain). The output
which outputs the video characters to from the duplicate 4.0 mhz timebase is
the display faster so more will fit on then soldered to the cut trace on the
the screen. S8So far, so good. The pin 37, U18 side. This is shown in
timing of the cassette transmit clock is Fig.2. This replaces the original timing
also increased so the cassette baud rate to the microprocessor, the phase 2
is increased from 300 to 412. This is clock, and the Disk transmit and
only a problem if vyou want to load receive. Now the disk works and so does
someone elses cassettes recorded at 300 the Video Mod.
baud. Since most of us do, the Video I previously mentioned a circuit
Mod includes a circuit which divides the provided with the Video Mod which
faster C4 signal back down to 125 khz. changes the too fast C4 signal back to

As already mentioned, the mod makes 125 khz so the cassette interface
the microprocessor run faster too. This operates at 300 baud. When you have the
would be fine except that the 610 disk controller board the additional
microprocessor produces another clock circuit is not needed. There is already
called the Phase Two clock (02) which & 125 khz signal on the &10 board which
drives many components of the system may be routed through the unused pin 11
including the transmit and receive on the J1 connector between the &00 and
speed of the disk controller. Since 610 boards and then to pin 2 of US7 on
disk input and output is very timing the 4600 board. This is shown in Fig.
sensitive, any changes will render the 3.
disk inoperative. The soclution then is I'm sure there are other ways of
to not change the disk timing. To do using the Video Mod and a disk system
this I chose to duplicate the original together. This is the one that worked
4.0 mhz time base and the first stages for me. Hopefully, it will allow those
of the divider chain on a separate piece of you with disk systems to also use the
of perf board. I used wire wrap for Video Mod and AARDVARK can resume
construction. The schematic for this is selling the Video mod for all CiP and
shown in Fig. 1. I then cut the trace Superboard systems.

X1 “ v +5V
X1-3932/60 mha. | g — _LleL
— 8 | 3 !
R1I-Y70
475‘A2£T’0

R2 =470~) vy 5 >

- 27 pF | % ¢ er g

UZ-7443500 - 1 o] L0

o2~ ©

V2-7415/6% i cik 0’3 o (e 52

lire wrApoR pornT (U2 (soloer 7o pinv 37

7o poinT an SEPERATE vr8 (6502))

BoARrs. For Crysta/) use Fhe ove Kemoved From éoo 50'%03

eR
CloBD st TIT 08D
— 24 o1 T — Unsolder pin 2
9 n Us7 ;;N; L+ Lree
v/2 of BoARD
Lk
LA, ADOThIS
: J ER
/?Dg 7"7‘; i ik « »
e Ll U Fl& 3
5°/,3£§5€1(P’” 13,0z, F1g. 1)
¥o __137 21 ,,',f,cur TRACE HERE A
v/g 6so2 | o Botomof Bonrd L1& 2

Z 20
70 Piv /3 V30

10

CHARLES HEFNER, STERLING HEIGHTS, MI

The following is a listing of my &502-0F
CODE table Generator program and the
&E02 0OF-CODE table it generates. This
program came to me as a by-product of my
Basic Dis-assembler program. In that
program, I wanted to be able to determine
the mneumonic for each OFP-CODE without
building a string array to do it.

RUN20O0O

6502 @P-CODES IN DEC & HEX

DEC HX OP L DEC

DEC HX @P L

0 00=BRK1 1

6 06=ASL2 7
12 0C=? 13
18 12=? 19
24 18=CLC! 25
30 1E=ASL3 31
36 24=BIl12 37
42 2A=ROL1 43
48 30=BMI2 49
54 36=ReL2 55
60 3C=? 61
66 42=7 617
72 48=PHA1 73
78 4E=LSR3 79
84 54=? 85
90 SA=? 91
96 60=RTSt 97
102 66=ROR2 103
108 6C=JMF3 109
114 72=? 115
120 78=SEI1 121
126 TE=R@K3 127
132 84=STY2 133
138 BA=TXA1 139
144 90=BCC2 145
150 96=STX2 151
156 9C=? 157
162 A2=LDX2 163
168 AB=TAY1 169
174 AE=LDX3 175
180 B4=LDYZ2 181
186 BA=TSX1 187
192 CO=CPYZ2 193
198 Cé6=DEC2 199
204 CC=CPY3 205
210 D2=? 211
216 D%S=CLD1 217
222 DE=DEC3 223
228 E4=CPX2 229
234 EA=NEP1 235
240 FO=BEG2 241
246 F6=INC2 247
252 FC=? 253

01=Q0RA2 2
07=? 8
OD=Q0KA3 14
13=? 20
19=0RA3 26
1F=? 32
25=AND2 38
2B=7? 44
31=AND2 SO
37="7 56
3D=AND3 62
43=? 68
49=zECR2 74
4F=? 80
55=E@R2 86
5B=? 92
61=ADC2 98
67=?
6D=ADC3
73=2
79=ADC3
7F=?
85=STA2
8B=7?
91=STA2
97=7
9D=STA3
A3=1?
A9=LDA2
AF=?
BS=LDA2
BB=?
Ci1=CMF2
C1=2
CD=CMP3
D3=2?
D9=CMP3
DF=?
ES=SBC®2
EB=
F1=SBC2
F7=?
FD=SBC3

170
176
182
188
194
200
206
212
218
224
230
236
242
248
254

DA=

? = NO1 STANDARD @P-C@DE

READY

HX @P L

cm- m- ==

02=7?
08=FHF1
OE=ASL3
14=?
1A=?
20=JSR3
26=ROL2
2C=BIT3
32=?
38=SECI
3E=KOL 3
44=7
af=L SR1
S0=BVC2
S6=LSkR2
5C=7?
62=7
68=PLAI
6E=REK3
T4=7
TA=?
80=7?
86=STX2
8C=STY3
92=?
9B8=TYAI
9E=?
A4=LDY2
AA=TAX1
BO=BCS2
Bé=LDX2
BC=LDY3
ce=?
C8=INY1
CE=DEC3
D4=?

EO=CPX2
E6=INC2
EC=CPX3
Fe=?

F8=SED1
FE=INC3

11

DEC HX @P L

15 OF=? 16
21 15=@ka2 22
27 1B=? 28
33 21=AND2 34
39 27=? 40
45 2D=AND3 46
S1 33=7?
57 39=AND3 S8
63 3F=? 64
69 45=EQ@R2 70
75 4B=? 76
81 S1=EQR2 82
87 57=? 88
93 SD=E@R3 94
99 63=?

The program listing is pretty
straight forward. Lines 910 thru 995 are
the data statements required for
decoding and lines 1000-1020 is a little
sub-routine to convert decimal to its
character string hex equivelent. Lines
2000 thru 2090 are the main line program
and take care of formatting and printing
the table and the associated column
headers.

WITH MNEMONICS 2 INSTRUCTI@ON LENGIHKS

DEC HX @P L

DEC HX 2P L

Qa=7? S
OA=ASLY 11
10=BFL2 17
16=pSL2 23
1C=? 29
22=? 35
28=FLF1 41
2E=ROL 23 47
$2 34=7? 53
3R=? 59
40=RTI1 65
46=LSR2 71
4C=JMP3 77
S52=? 83
S8=CLI1 89
SE=LSR3 95
6a=?
6A=REK1
70=BVS2
76=ROR2
7C=?
82=7?
88=DEY 1
> 8E=STX3
94=5Ty2
9A=TXS1
AO=LDY2
A6=L.DX2
AC=LDY3
B2=?
B8=CLV1
BE=LDX3
C4=CPY2
CA=DEX 1
DO=BNE2
DésDEC2
DC=?
E2=?
E8=INX1
EE=INC3
Fa=?
Fas?

05=CRA2
0B="?
11=8RA2
17=7?
1D=@2RA3
23=?
29=AND2
2F=7?
35=AND2
3B=1?
41=EQR®?
47=?
4aD=E@R3
53=7?
59=E@R3
SF=?
65=ADC2
6B=7
71=ADC2
77=?
7D=ADC3
83=7?
89=7?
8F=7?
95=5TA2
9B=7?
Al=LDA2
AT=17
AD=LDA3
B3=7?
B9=LDA3
BF=?
CS5=CMP2
CB=?
Di=CMP2
D7=?
DD=CMFP3
E3=?
E9=SBC?2
EF=z?
F5=SBC2
FB=7?

03=7? 4
09=@RAZ2 10

69=ADC2
6F=?
75=ADC2
7B=?
B1=STA2
87=7?
8D=STA3
93=7?
99=STA3
9F=?
AS=LDA2
AB=7?
Bi=LDA2
B7=?
BD=L DA3
C3=?
Co9=CMP2
CF=7?
DS=CMP2
DB=?
E1=SBC?2
E7=?
ED=SRBC3
F3=?
F9=SBC3
FF=?

137
142
149
155
161
167
173
179
185
191
197
203
209
215
221
227
233
239
245
251

LIST910-2999

910
915
920
925
930
9235
940
9 45
950
955
960
965
970
975
980
985
9290
995
1000
1010
1020
2000
2001
2002
2003
2004
2006
2010
2012
2020
2040
2050
2060
2080
2090
READY

DATABPL2

DATASBC3,INC3»?
HI=INT(D/16):L0=D-(HI*16)

RETURN

FORX=1T@3: PRINT: NEXT
PRINT"™

FORX=1T0O6: PRINT"
FORX=1TO63 PRINT' === --
FORX=1TO255

READOFPS

D=X3:GeSuUB1000

Y=Y+ 1:IFY>STHENY=0

NEXTX

PRINT: PRINT: PRINT: PRINT"
FORX=1T@3:PRINT:NEXT:END

AND YET ANOTHER JOYSTICK INTERFACE
by Ted Mahler

By using only two I.C.’s and a
handful of components you can easily
convert readily available linear
joysticks for use on a Superboard II.
An LM2901 quad comparator is used to
compare the voltage level of the
joystick pots with the voltage level of
reference pots. This comparison yields
a voltage which is used to simulate a
keyboard key closure.

As vyou can see in figure 1, each
comparator in the LM2901 has a joystick
pot (JP1 or JP2) connected to one input
and a reference pot connected to the
other input. One of the reference pots
voltage level is set below the voltage
level of the joystick in the neutral
position while the otherreference is set
slightly above. This setup results in
each comparator having its inverting
input higher than its non-inverting
input yeilding a low output. Ry moving

the joystick to the left, the wiper
voltage of JP1 will increase. Pins @
and 10 of the LM2901, being connected to
JP1i, will also show this voltage
increase. This will reverse the
conditions on the comparator whose
inputs are on pins 8 and 9 and will
change its output to & high. This will
simulate a key closure of the "1" key.
Note that the conditions on the

comparator whole input pins are 10 and
11 has not changed even though pin 9 has

I=0:Y=0:H$="0123456789ABCDEF"

DATABRK 1, BRA2, 75 ?» 75 BRA2, ASL2, ?, PHP1, @BRA2, ASL 1, 7, 75 ORA35 ASL 3, ?

DATAGRA2, 7?5 7» 25 ORA2, ASL2, 2, CLC1, PRA3, 75 ?» 2> ORA35 ASL3» 25 JSK3» AND2, ?
DATA?,BIT2, AND2, ROL2, ?5PLP1, AND2, ROL 1, ?

DATABI T3, AND3, ROL 3, 2, BM1 2, AND2» 25 25 2> AND2, ROL 2, 25 SEC1» AND3» 25 25 7
DATAAND3, ROL3s 25 RTI 15EQR2, 7?5 725 ?2» EBR2,LSR2> 75 PHA1, EBR2,LSR1, ?
DATAJUMP3, EBR3,LSR3, ?»BVC2, EBR2, 25 25 2> EOR25LSR2, 25 CLI1,EPR3, ?, ?» 7
DATAE@R3,LSR3, 2o RTS1,ADC2, ?5 ?,» 75 ADC2, ROR2, ?5 PLA1,ADC2» ROR1, ?
DATAJMP3, ADC3s R2R3, 25 BVS2,ADC2, ?5 2?5 25 ADC25 ROR2, 2, SEI 1, ADC35 25?5 ?
DATAADC3sROR35 ?5 75 STA25 75?25 STY2, STA2,STX2s 2, DEY 15?25 TXA15» 25 STY3
DATASTA3>STX3» 25 BCC2,STA25 2525 STY2, STA2,STX25 25 TYA1s STA3» TXS15 22 ?
DATASTA35?5?2,LDY2,LDA2,LDX2, ?2,LDY2,LDA2,LDX2, 2?5 TAY1,LDA2, TAX1,5?
DATALDY3,LDA3,LDX3,?,BCS2,LDA2, ?,?2,LDY2,LDA2,LDX2, ?» CLV1,LDA3, TSX 1
DATA?,LDY3,LDA3,LDX3,?5CPY2,CMP2, 75?2, CPY2, CMP2, DEC25 7?5 INY 1, CMF2
DATADEX 15?2, CPY3, CMP3,DEC3s 25 BNE2, CMP25 75 75 25 CMP2, DEC2, 2, CLD1,CMP3»
DATA?»?,CMP3,DEC3, 25 CPX2, SBC2, 7?5 ?» CPX2, SBC2, INC2, ?, INX 1, SBC2, NOP1>»
DATACPX3,SBC35, INC3, 72, BEQ2,SBC2, 2?57, 2, SBC2, INC2,?,SED1,SBC3» 75?5, 7

C$=MIDSC(HS,HI+ 1, 1)+MIDS(HS,LO+1,51)

6502 OP-CODES IN DEC & HEX WITH MNEMONICS & INSTRUCTI®N *'3
PRINT*“LENGTHS"t PRINT: PRINTt PRINT
DEC HX @P L'3 sNEXT

="3:NEXT: PRINT: PRINT

?2 =

12

PRINTD3 TAB(S+ 12%Y)3C$3"="30P%$3 TAB(12+ 12%Y) 3

N@T STANDARD @P-C@DE"™

increased in voltage. When the
joystick is moved right,the conditions
on that comparator are reversed and the

"2" key is decoded.

joystick up, the wiper voltage on JP2
increases. This reverses the voltages
on the comparator on pins 4 and S of the
LM2901 and provides a high output
decoding the "3" key. This comparator's
mate, on pins 6 and 7, will change its
output to a high when the Jjoystick is
moved down, giving a "4" key closure.
By moving the Jjoystick between any of
these four positions, two adjacent
outputs will go high. This provides

By moving the

four additional directions from the
joystick. The pushbutton is the "7"
key.

The comparator outputs,
resistor,

via a pull-up
are buffered and inverted
through a 74LS240 octal buffer/line
driver. Pin 1 of the buffer is the
enable for its J-state outputs. This
enable is strobed by the R7 line from
the Superboard keyboard connector (J4 in
the 08I schematics). Outputs for the
buffer are connected to J4 as shown in
figure 1.

Layout and construction of the
joystick is, of course, up to the
builder. Ifyou want the joystick
positions to decode the same keys as I
have decoded, then orient the joystick

2.

figure Also
and ground such

assembly as shown in
connect the +5 volts
that the JF1 wiper voltage increases
when moving the stick to the left and
the JF2 voltage increases when the stick
is moved up. All decoding circuitry was
enclaosed in a box containing the
joystick, with an 8 pin ribbon connector
linking it to & socket on the back of
my computer case. You may wish to place
thie circuit in the computer and use six
wires for the connection to the
Jjoystichk.

Set up of the circuit is straight
forward with only two adjustments being
necessary, reference pots 1 and 2 (RF1
and RFZ). With the Jjoystick in the
neuwtral position, adjust RF1 such that

FIGURE 2. Physical layout of the joystick.

13

the voltage on pin 4 is approximately
L2580 volts above the voltage on pin 5.
Likewise adjust RF2 such that the
voltage on pin 11 L2580 volts below
the pin 10 voltage. After you have the
circuit operational you may want to
adjust these references to obtain a
better "feel" on the joystick. The
closer the reference voltages are to
the joystick voltages, the more
sensitive the stick is to movement.

I have used this joystick directly
with the AARDVARE Galaxia game. Other
program can be modified to use this
joystick by changing the control keys or
by modifying the hookup.

is

R1,R2,R3,R4 3900 ohms
- R7 D1,D2,D3,Dk 1N914
! RP1,RP2 10,000 ohm po
T c1 JP1,JP2 Joystick pots
. S ICcl 74135240
IC2
O +5 Volts LHER0L
_IVL- D1 (PFqual to or greater than .TP1 or JP2
— b %:}7 c7 (5000 ohms for this joystick model
— D2
. Vg [cé
LI g;‘ FICURE 1., Joystick interface schematic.
N €5
— D4
R1 - K &
— R3
R2 AN\ —2 Ground
— NN\ —¢ R4
- Ic2 — N\ \—o
‘] 1]
RP1 RP2
[y
T L4b
! 1 & 7
JP2 ' f
Jil +5 Volts
To pins 9 & 10 (LM2901)

JP1
JP2
/1
| |
! 2 | To pins
o O o } | Yy
l | (1LM2901)
L [——
0 =

RE-232 & 110 BAUD MODS FOR 0SI C4F
by Donald Brennan

RS-232 MOD

On the 302 board install a 14 pin
socket & insert a 7404 at U3l position.

Populate the TX Data Output circuit
with a 2N4403F at 02, a 10K 1/4W at RSS,
a 10K 1/4W at RS57 and a 470 1/4W at
RS6.

Cut land at U411 pin 2
pin 7. Add wire
27,

Use a twisted pair with signal wire
going to P/J3 pin 7 and ground wire
going to P/J3 pin 8. The other end goes
to K8R-33 input terminal strip. Pin 7
and pin é.

going to P/J3
on P/J1 pin 24 to pin

U v
3 3
| 2

= O

B _NaonNyyo3

O

C
®)

00
R557p% q\ R57

R56

110 BAUD MODIFICATION
he 110 baud mod is obtained by adding a

20K pot and BSPST switch in series with
R16 and R17 of SS858 timer circuitry on
the H 502 board. This pot is shorted out
for normal 300 baud operation.

Lift end of R1é6 out of hole and bend
up. Attach a twisted pair to lifted end

and hole where Rl1é went. Mount the
sw-pot on the back panel where the AC
control jack was removed for this mod.
Connect the twisted pair to this
sw—pot.

Set switch to open. Turn on ASR 33
and C4P. Type save and hold down any

key for printout. Adjust pot for
readable printout. When set, type rest
of keyboard and adjust it if necessary.
Return switch to 300 baud position for
normal operation of system.

To printout during C4P disk operation
type list #1. This will send data to
printer. Inyour programs, have one of
the line numbers state: DV=1. Have
print statements state: print#dv,"print
statement here". You can modify other
programs already written for the C4P DOS
by replacing DV=2 with DV=1. This will

reroute the data from the CRT to the
printer.
ll) L To RIG
T/\
20K : __spsT
Rl PoT® — sw

14

JOSEPH TAVARES, NEW BEDFORD, MA

Thanks to your Journal and C2E Rom I
finally found out how to program my C2.
One thing I noticed is that there
doesn’t appear to be a program that uses
circular motion on the 0SI computer.
This short program will demonstrate how
this is done:

5 FORX=1TO35:?:NEXTX: POKES&6900,0

10 L+53967:POKEL, 219

15 R=7:FI=3.14159

20 FORA=0TOZ2¥PISTEP. 1

25 X=INT(RXCOS(A)):Y=INT (RXSIN(A)) k64
30 POKEL+X+Y, 226

35 FORT=0TO&:NEXTT

40 POKEL+X+Y, 32

45 NEXTA

50 GOTO20

When this program is run, you will see a
circle revolving around a cross. If
lines 35,40 and S50 are removed the
program will draw a large circle. R=the
radius and can be changed for different
size circles. L=center of circle. This
program can be used for planetary motion
or an analog clock face.

BOBBRY AKINS, APO SAN FRANCISCO
While perusing the Journal

I realized that no

given to

(Vol.2 #1)
mention has been
Number Converting for

Addresses. Your keyboard routine is a
good example:
Keyboard is at $FE00 yet your pokes are

O and 283!

I thoughl perhaps a means of getting
from one to the other might be helpful.
This little quick convertor can be
manipulated faster than a conversion
program can be loaded.

This manipulation will work in either

direction and is quick enough for low
cost programming.
1) Reverse the two Poke values

corresponds to
loaded.
2) Convert
number.

how address’® are
each number to an 8 bit RCD

1

8 7 &
|1ggl 64132 T16 [8
| I— [1

S 4 3
4

r| R

[1]
L e |

]
]

EXAMPLE: 253=1111110Y

0=00000000

3) Arrange together example:
11111101/00000000

4) Separate into 4 each 4 bit numbers
Example: 1111/1101/0000/0000

3) Starting at left look up

per the look up table.
Example: F E | Q | [*]
11111 1101 1 0000 | 0000

each 4 bits

LOOK UP TABLE ConTbw

8 1000
1 Q001 9 1001
2 0010 (10) A 1010
3 0010 (11) B 1011
4 0100 (12) C© 1100
=] 0101 (13) D 1101
6 0110 (14) E 1110
7 | 0111 (15) F 1111

The important thing to remember is
that there are an awful lot of these
FPOKEs and PEEKs which you can use
without knowing anything about machine
code and even if you are a rank
amateur and rank beginner. For
instance, location 15 on the BASIC in
rom system contains the number of
characters to be printed before a line
feed. Thats very handy to know. For
some Cl systems vyou loose a character
off the end of the line if you allow the
system to to print 24 characters wide.
If you, however, choose a shorter line
length when you power up, you will find
that vyou can’t make tapes that can be
reloaded back into the system. The
tape interface requires that you have a
line length of greater than 71
characters. As long as you know the
location where the length of the line
ie stored you can POKE a number in there
to shorten the line while vyou are
programming and FOKE another number in
there to lengthen the line when you make
a tape. After you have the system
running, you can then execute "POKE
15,22" to shorten the line length and
then execute "POKE 15,72" before you
make a tape.

The First Book of 0SI by Williams and
Dorner, Carlson’s 0SI BASIC in ROM,
MICRO, COMPUTE, and the Aardvark Journal
all contain references to handy memory
locations. Most of these you can use
without knowing anything at all about
machine code and by knowing very little
about BASIC.

If you have a disk BASIC system, you
have even more freedom. In the disk
BASIC system very little is stored in
ROM. The entire BASIC line is normally
put into RAM. That means that you can
modify virtually any part of your BASIC
language by simply knowing where it is
stored on the disk and knowing enough to
either interpret the code or at least
enough to read the manual where it is
interpretted for you. For instance, it
is very annoying to most BASIC users
that vyou can’t input a comma or a
semicolon in the middle of an input
statement. It sometimes makes it
difficult to put togethor things like
word processorse and report writers when
you can't input punctuation into the
machine. Fortunately, the 08I
documentation shows you where the
section that finds the delimiters is
located and tells you how to POKE them
out of existance.

The first reason the POKEs are handy

then is that some things have to be
stored in RAM because they vary. By
being able to manipulate them directly

you can expand capabilities of the BASIC
and set it up for conditions in which
the original authors did not envision.
The second reason why PEEKs and POKEs
are handy is that the people who wrote
the BASIC for your system tried to write
one basic to run on a lot of different
machines. They’re no dummies. It's
expensive to write a BASIC and to cut
new ROMs for every machine. Therefore,
to make the BASIC more universal, they
tend to write one 46502 BASIC and instead
of doing things like putting input and
output routines into the BASIC, they
tell the BASIC to refer to certain

vectors to find those things which vary
from machine to machine. For instance,
the location of the keyboard and
decoding of the keyboard may vary from
machine to machine as it does between
the Cl1 and the C2/4/8 and the Apple
machines. Therefore, rather than
decoding the BASIC in ROMs, they put
that decoding elsewhere in another ROM
and put the address of that ROM in a
location in memory which the BASIC looks
at to find out where to find the
keyboard or where to find the video
screen or where to find the cassette
port and all the other things that vary
from machine to machine. This has the
effect of making the BASIC more
uwniversal and it also allows us to get
in and put in our own input and ocutput
routines. For instance, on the C1iP the
BASIC ROMs do not know where the
keyboard is or how to interpret it.
They do know that in locations 536 and
537 they will find an address which will
point them toward the keyboard routine
for whatever computer they happen to be
sitting in. (BASIC in ROM does not know
if it is in & C1 or C4) The same thing
is true for the output routines. They
are not in BASIC ROMs but the BASIC
ROMs know that they are at an address
which is pointed to by the information
in 338 and 539.

That allows us to do some neat things

by putting ocur own addresses in there
and by pointing the basic to our own
routines. For instance, the cursor

control program which was published by
Aardvark, and similar ones which have
been published in PEEK 65 and MICRO,

work by pointing basic to a new input

routine which we poke into existance
ourselves. In a similar manner, we used
to market a high speed load and save

tape routine for the C1P which worked by
intercepting the load and save vectors
and redirecting the machine to our own
routine. While the beginning user may
not be sophisticated enough to write
such routines for himself, a number of
them are available in old issues of
MICRO, the AARDVARK Journal, PEEK &5 and
similar sources which even the beginner
can implement.

The third thing that makes PEEKs and
POKEs handy is that some things look
like memory locations which really
aren’t memory locations. Printer ports,
cassette ports, and video screens look a
lot like memory locations and work the
same way. For instance, while your
system will use a UART or PIA for
cassette I/0, it will look to the mystem
as 1if there was one memory location that
when you put things into they go to the
cassette and another memory location
where things magically appear from the
cassette. Knowing that, we can
manipulate some of the peripherals
directly. Some of this is simple
enough for almost anybody to do and it's
a lot of fun. For instance, in the old
Aardvark catalogs we printed a PEEK A
PORT wutility which worked by pretending
that the cassette input was a cassette
location. It printed to the screen
whatever it found in that memory
location and therefore told you what was
going by on the cassette tape.

Cow7T D

PEEK A PORT UTILITY

4 REM PEEK A PORT UTILITY

8 REM C2/4/8 VALUES

10 A=4&4512:1B=A+1

20 WAITA, 1:PRINTCHR® (PEEK (B)) 3 :60T0O10
35 REM C1 VALUES

40 A=6144QB=A+1

SO WAITA, 1:PRINTCHR® (PEEK (R)) ; 1 GOTOS0

This is &a two line program. C2/4/8
users enter lines 10 and 20. Cl users
enter lines 40 and S0.

There are, of course, a couple of other
reasons why Peeks and Pokes are used,
but they are somewhat beyond the scope
of this article. They are,of course, the
basic method by which graphics is done
with the 0SI systems. We've covered
that in so many previous articles that I
don't think it needs to be repeated
here. They also are a handy method for
storing and manipulating machine code
programs from a basic system. That,
however, is somewhat beyond the scope of
the beginners article and will be
covered in the upcoming issues on
machine code usage.

JOHN SEYBOLD, MADISON, WISCONSIN
Here is an easy way to add a short delay
to the break key on a Superboard or CilF.
This in only for the models that do not
already have a delay circuit. The mod
is shown schematically in fig 1 and
pictorally in fig 2. All we're doing is
adding a delay to the reset line of
approximately R¥C seconds. With the

values shown, I got about a 1/2 sec
delay. To increase the delay, simply
use a larger capacitor. Do not try
usirng a&a larger resistance unless vyou

install a larger pull up resistor on pin
40 of the &502. This circuit will also
force the computer to come up already
reset when the power is turned on.

When I made the mod to my Superboard,
I installed the resistor on the
underside of the board between the break
key and the hole next to the trace cut.
I advise you to sleeve the leads if you
use this approach. The capacitor was
mounted on top of the board as shown.

“EIE. T

You may wish to experiment with
different capacitor values before
soldering ome in place.
Fol ot
: v
L’o \/a \
6502 T 7~
| Y70 n
e — - —AAA- -
|
! 1
100 NF
-
I
e

é?m
‘ . 6502 &c_«'ﬁ

/
JOONF. i @y _\ A fo!

‘ 47010 1
/(E/éoﬁed GrekiBa) X
"Fre2” |

16

EARL MORRIS, MIDLAND, MI
FIXES FOR ALIEN-RAIN

To make the "Bullet" more visible:

45 MP=MP-V: IFFEEK (MF) =UTHENFOKEMF, F:
FORKEMP+V,U: GOTO45

446 POKEMP+V, U

To avoid leaving garbage when a
drops using level one:

bomb

190 FORB=0OTODD: FOKEDE (A) +B,F:
FOKEDB(A) -B, F:NEXT

To printout the score after a miss to
show the loss of & points:

130 IFPM(SRTHENSC=SC~5: G0TO120

To make the program easier to follow and
a little faster, TL(CC) can be replaced
with a simple variable TL in lines 225,
235, 240, 260 and 420. Likewise DR(7)

can be replaced with D7 in lines 135,
140, 1850, 1855, 160, 165, 170, 230 and
420.

FERSONAL NOTE FROM C. THOMAS HILTON

Mr.Hilton noticed an article in one
of our Jowrnals for a customer who is
blind. He has offered his assistance
to any "handicapped" individual who
may need it. C. Thomas Hilton

F. 0. Box #7

Deer Lodge, Montana

859722

RURIK™S CURE
by John Wright, Canada

Rodgers rules of games
you

should not bother with games, it is
easier to play in their original form.
This program is legitmate on two counts
-first, that I have trouble following
through on planned moves on the cube
itself -second my son won't let me.

I had thought that it might be easier
to see patterns with the problem in two
dimensions, but so far this has not come
true.

The cube is displaved
down crucifix.

programs says

as an upside
The faces are:

[8]

o>

S (don’t ask why)

The program asks which face you wish
to deal with and how many counter claock
clockwise rotations you wish to apply.
Three counter clockwise equals one
clockwise. If the number of rotations
is zero, then the face called for is
moved to the 1" position.

The program itself is quite simple
but the coefficients were laborious to
work out. The picture is kept in MA(2, .,
) which is a 2 X 12 grid. The corners
are filled with blanks and letters for
the colours occupy the rest. A new

position
the new

into MA(L--). When
is complete it is
MA(2~~) and FOKEd to
screen couwld have been
MA(2--~) but it seemed
a second matrix than

5 50 As intermediate steps are
completad the screen is updated.

The +irst block of data is used for
sWwapping the faces around. Line 3é&
moves face 9 to position 1| and is read
Al

~Move face 1 to p2.
-Move face 2 to pé.
~l.eave face 3.
et .
Line S0 is
each face.
Line &% is the coefficients
rotate a face in SURGOO,
Lines 80 through 90 are the
coefficients to rotate an edge attached

1 REM RUBIK®S CUEE
2 REM SOFTWRIGHT (&173)
REM V1.2, 12 NOV 81
DO=H3608: LL=32: REM THESE ARE FOR &00
EOARD

10 DIM MA(2,9,12) ,MC(b,4,2) MR (b6,2) ,CO(
6,73) CF(b,b,4) ,CC(&)

14 MS=101

16 DIM ME(MS,2) :N=1

20 FORI=2T06:FORJ=1T06: FORK=1T02: READMC
(T,J, k) sNEXTK,J,1

30 DATA 5,0,1,0,3,3,4,1,6,2,2,2

32 DATA 4,0,2,1,1,0,6,0,5,3,3,0

34 DATA 3,0,2,3,6,0,1,0,5,1,4,0

36 DATA 2,0,6,2,3,1,4,3,1,0,5,2

38 DATA 6,0,2,2,4,0,3,0,5,2,1,0

40 FORI=1TOb:FORJ=1T02: READMR (I,J) : NEXT
Jdul

SO DATA 4,7,1,7,4,4,8,10,7,7,4,1

55 FORI=1TO9:FORJI=1TO12:MA(1,I,J)=32:NE
XTI, I

60 FORI=1T06: FORJ=1TO3: READCO (I,J) s NEXT
P

65 DATA 7,6,10,4,6,10,7,3,7,7,9.13,10,6
$10,7,0,4

70 FORI=1TO&:FORI=1TO&: FORK=1TO4: READCF
(I,J, k) sNEXTK,J, I

80 DATA -1,0,4,0,14,~3,~4,2,~1,3,4,-2,2
2 0,4,0,11,0,-4,0,2,3,4,-2

82 DATA 4,0,0,0,-6,1,6,0,4,0,0,0,-3,1,6
W0, 4,0,0,0,12,1,-6,0

84 DATA =2,~1,6,0,7,0,0,0,-1,3,4,-2,~1,
0, 8,0,16,~1,-6,0,7,0,0,0

86 DATA =6,1,6,0,9,0,0,0,-1,3,4,-2,17,0
p 8,0, 12,1,-6,0,9,0,0,0

88 DATA 6,0,0,0,16,~1,-6,0,6,0,0,0,1,~1
5650365050!05“25_1!650

90 DATA -7,0,8,0,2,3,4,-2,-1,3,4,-2,20,
0y =8,0,17,0,-8,0,14,~3,-4,2

100 GOSURS10: GOSURS00: FORI=1T018: PRINT:
NEXTI: GOSUBZ0O0

110 INPUT"FACE";FA: IFFAX&THEN7OO

120 INPUT"ROTATION"3;RO:FORI=1TO18: PRINT
tNEXTI : GOSURISO

130 ME(N, 1)=FA:ME (N, 2)=R0: N=N+1: IFN=MS~
1 THENFRINT"N="MS-1

140 IFN>MSTHENN=1

150 IFRO=0THENGOSUE400: GOSURIOO: GOTOL10
160 FORL=1TORO: GOSUEZ00: NEXTL: GOSUBIOO:
GOTO110

190 END

199 REM ROTATE FACE IN QUESTION

200 FBE=FA: GOSUBLOO

220 FORI=1TOZ:FORJI=1TO2: FORIA=1TO&

230 CC(IA)=CF(FA,IA, 1)+CF(FA,IA,2)XI+CF
(FA, IA, T) XJ+CF (FA, 1A, 4) %I %J

is mapped
polstion
into
SEEEN . The
instead of
to use

copied back
the
uged

Do not rotate.
Rotate twice.
Rotate 1 turn Cw.

the low numbered corner of

needead to

751-832

o i

17

to a rotating face. For &5 and 80--90
you need faith or a pile of scrap
paper.

Line 100 reads in a new cube and then
offers the opportunity to overwrite it
with whatever is in lines %60 and 570,

The data on these lines is
as of 12 nov. 81-9p.m.
in lines 110-1&60,
preceeded by REMs
functions.

The ME matrix remembers 100 moves
and will print them. If 7 dis input in
response to FACE?. If youw have more than
8k, then MS can be increased.
Manipulating the matrices is gquite slow.

Machine language routines would help.
Taking out SUEIS0 would speed it Uup @
little, but the intermediate updates
wowld not appear.

my son’s cube

The program is

The subroutines are
describing their

240
250
260
270

NEXTIA
MA(1,CC(1) ,CC(2))=MA(2,CC () ,C0(4))
MA(1,CC(3),CC(4))=MA(2,CC(5),CC(&))
NEXTJ, I:GOSURIO0: RETURN

299 REM SWAF MATRICES, PRINT

300 FORMI=1TO12: Z=00+LL*MJ: FORMI=1TO9: M
A(2,MI,MI)=MA(1,MI,MI)

T10 POKEZ+MI,MA(2,MI,MJ) s NEXTMI, MJ: RETU
RN

350

360
RN

399

400
20

410 FORKC=1T04-KR: FB=f: G0SURL00: GOSURTS
O3 NEXTKC

20 NEXTK:BOSUB300: FORK=1T0b: KA=MC (FA, K
+ 1) 1 IFKA=K THEN4S0
25 FORI=0TO2:FORJI=0TO2

430 MACL, MR (KA, 1) +1, MR (KA, 2) +J) =MA (2, MR
(Ky 1) +1,MR (K, 2) +J)

440 NEXTJ,I

450 NEXTK:RETURN

500 INPUT"START NEW OR INPUT":;0%:IFLEFT
$ (0%, 1)="S"THEN RETURN

510 BL$=" ":FORJ=1T0O12:READA%: IFJ<70R
J*PTHENAS$=BEL$+A$+EL$

§20 FORI=1TO9:MA(1,1,J)=ASC (MID$ (A%, 1,1
y)

530 NEXTI,J:RETURN

540 DATA RRR,RRR,RRR,BBB,EEE, BRE, GEG000
YYY, BEGO00OYYY

S50 DATA GBGOOOYYY, WWW, WWW, W

560 DATA 0OGR,000, 000, BER, EBE, BEE, YYYRRR
GGG, YYYRRWEGE

570 DATA YYRGRGOOY, WWW, WWi, WRW

599 REM Zx3 ROTATION

600 FORI=1TO3:FORJ=1TO3

610 MA(1,CO(FB,1)~1,CO(FB,2)+J)=MA(2,CO0
(FE,1)~-J,CO(FR,3)~1)

620 NEXTJ, I:FORI=1TO3:FORJI=1TO3

630 MA(2,CO(FE, 1)-1,CO(FR,2)+J)=MA(1,CO
(FE,1)~I,CO(FE,2)+J)

640 NEXTJ, I:RETURN

700 INPUT"DO YOU WANT MOVES LISTED"j;Q$:
IFLEFT® (Q%, 1) < 3"Y"THENEND

710 INPUT"STARTING AT WHAT NUMEER"j;NA
715 POKES17,1

720 FORNB=NATONSTEPS: FORI=0TO04: PRINTME (
NB+I,1) s ME(NE+I,2);

730 NEXTI:PRINT:NEXTNE

740 POKES17,0:G0TOL110

FORNJ=1TO12: Z=00+LLXNJ: FORNI=1T0%
POKEZ+NI,MACL, NI, NJI) :NEXTNI, NJ: RETU

REM MOVE FACES AROUND
FORK=1TO&: KE=MC (FA, K, 2) : IFKB=0THEN4

100 REM PROGRAM TO SET UP A NEW "AFILE"
10% REM
110 REM 1) USE "CREATE" TO MAKE A FIL

E OF ABOUT 4 TRACKS)

120 REM CALLED "AFILE" FIRST, AND
RUN "ZERO" TO CLEAR IT.

130 REM

140 REM 2) NEXT RUN THIS PROGRAM TO I
NITIALIZE THE FILE

150 REM WITH 2
STARTING POINTERS

160 REM

170 REM REMEMBER TO RUN
0 ALLOW ONE BUFFER

180 REM BEFORE

190 REM

195 REM IF You
EEL FREE TO CALL ME:
200 REM GARY KAUFMAN 206 5.13TH ST
» PHILA,PA 19107
210 REM (215)
220 REM

1000 INPUT"INITIALIZE ANIMAL FILE";A%

1020 IFLEFT$ (A%, 1)<>"Y"THENEND

1040 DISK OPEN,&, "AFILE"

1060 DISK GET,O

1080 PRINT#6,"2,4"

1100 DISK PUT

1120 DISK GET,1

1140 PRINT#6&,"2,3,DOES IT LIVE IN THE W
ATER?"

1160 DISK PUT

1180 DISK GET,2

1200 PRINT#6,"!,MOOSE, "

1220 DISK PUT

1240 DISK GET,3

1260 PRINT#&,"!,FROG, "

1280 DISK PUT

ANIMALS AND SET UP

"CHANGE" T
TYPING THIS IN!!

HAVE ANY PRORBLEMS F

735-2841

100 REM ANIMAL FILE GAME (MODELED AFTER
APPLE VERSION)

105 REM GARY KAUFMAN 204 S.
HILA,PA 19107

110 REM (215) 735-2841

115 REM ¥x% REMEMBER TO USE CHANGE TO C
REATE ONE BUFFER

116 REM %% BEFORE TYPING THIS IN !!
117 REM

120 C=1:R=0

140 DISK OPEN,&, "AFILE"

160 DISK BET,O

180 INPUT#&,AS$,LS

200 A=VAL (A$) 1L=VAL (L$)

220 FORI=1TO32:PRINT:NEXT:PRINTTAB(25)"
ANIMALS" 1 PRINT: PRINT

240 IFRTHEN380

260 INPUT"INSTRUCTIONS";As

280 IFLEFTS (A%, 1)<>"Y"THEN380

300 PRINT:PRINT"YOU THINK OF AN ANIMAL,
I WILL TRY TO GUESS THE

320 PRINT"ANIMAL YOU ARE THINKING OF.
340 PRINT"IF I DON’T KNOW THE ANIMAL I’
LL ADD IT TO MY FILE FOR
360 PRINT"THE NEXT GAME.
380 PRINT:PRINT"I KNOW "A"

13TH 8T. P

ANIMALS"

18

400 DISK GET,C:INPUT#&,A$,B%,C$

420 IFA$="!"THENS20

440 WP=VAL (A%) : RP=VAL (B$) : PRINTCS: INPUT

A

460 IFLEFT$(A$,1)="Y"THENC=RP

480 IFLEFTS (A$,1)="N"THENC=WP

500 GOTO400 o
520 PRINT:PRINT"IS THE ANIMAL A"j

540 A$=LEFT$ (B%, 1)

560 IF (A$="A")0OR(A$="E")OR(A$="1")0R (A%
="0") OR (A$="U") THENPRINT"N"§

580 PRINT" ";B$;: INPUTAS

600 IFLEFT4(A%$,1)="Y"THENPRINT"I GOT IT
RIGHT ! ":GOTO1200
620 PRINT"ALL RIGHT,
AS THE ANIMAL?"

640 INPUTN$

660 PRINT"WHAT WOULD BE A QUESTION THAT
WOULD DIFFERENTIATE"

680 PRINT"BETWEEN A"j

700 A$=LEFTS (N$, 1)

720 IF(A$="A")0OR(A$="E")OR(A$="1")OR(AS
="0") OR (A$="U") THENPRINT"N";

740 PRINT" ";B$" AND A";

760 A$=LEFTS$ (B$, 1)

780 IF (A$="A")0OR(A$="E")OR(A$="1")0R (A%
="0") OR (A$="U") THENPRINT"N"}

800 PRINT" "yN$: INPUTQ$: IFRIGHTS (@%,1)<
U PUTHENOS=0%+" 7"

820 PRINT"WHAT WOULD BE THE CORRECT ANS
WER FOR A"j

840 IF (A$="A")OR(A$="E")OR(A$="1")0R (A%
="0") OR (A$="U") THENPRINT"N";

860 PRINT" ";N#: INPUTTS

880 DISK GET,C:INPUTH6,T1$,T2%,T3s

900 DISK BGET,L:A$=T1$+", "+T2%+", "+TI61P
RINT#&, A$

920 DISK PUT:L=L+1

940 DISK GET,C

960 A$=STR$ (L—1)+", "+GTRS (L) +", "+Qs%

980 IFLEFT$(T$,1)="N"THENA$=STR$ (L)+","
+STR$ (L-1)+", "+0%
1000 PRINT#6, A%
1020 DISK PUT

1040 DISK GET,L
1060 As="1 "+NS+",
1080 DISK PUT:L=L+1
1100 DISK GET,O: INPUTH&, AS,L$
1120 A=VAL (A$)

1140 A=A+11A$=STR$ (A)+", "+STRS (L)
1160 PRINT#6,A$

1180 DISK PUT

1200 C=1:R=11G0TO140

I GIVE UP. WHAT W

"1PRINT#6, A%

CORRECTION by J. Kaposztas !
There was a slight typographical
error in David Kuhn’'s Reverse Video Mod
in the Feb. issue of the Journal. The

IC used as an XOR gate should be a
74L886 not 74L874 as mentioned in the
diagram.

Also the place to cut the foil trace
is on top of the 400 board about a

quarter inch from pin #9 of U42 (the
74L8165) betwean the two plated through
holes.

FOR SALE:

MITTENDORF HIGH RES8 BOARD, FULLY
POPULATED. INCLUDES ALL JUMPERS AND
DOCUMENTATION. MANY EXTRAS. #90.00
CALL JERRY MELE (216) 225-01357 -

