ENCODER
ENCODER

ENCODER

ENCODER

ENCODER
ENCODER

ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER

ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER

ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER
ENCODER

6502 ASSEMBLER / DISASSEMBLER

PREMIER PUBLICATIONS

UK10t/ OHIO QUALITY SOFTWARE

U

L
|

ENCODER ENCODER ENCODER ENCODER ENCODER

ENCODER is an EPROM-based full feature 6502 assembler/disassembler supporting full
mnemonics, labels, hex, dec, binary or ASCII input, etc. As it operates nominally from
BASIC workspace, utility EPROMS such as PREMIER TOOLKIT II may be used in
conjunction with it to provide sophisticated FIND, AUTO, REPLACE, and other
functions. It also ties in directly with the CEGMON full-screen editor.

The manual supplied with ENCODER is designed to give the user all the
information necessary to use it successfully. The manual is NOT a complete course in
6502 programming! Newcomers to machine code programming are strongly urged to
purchase one of the books listed near the end of this manual.

INITIALISATION

To enter ENCODER, use one of the following methods. Note that in the
examples below, xxxx refers to the EPROM hex start address which will be
8000,8800,9000 or 9800.

a/ RESET M xxxxG

b/ from BASIC 5, &GOS$xxxx

c/ POKEIll,xx:POKE12,xx:X=USR(X)

d/ CALLxxxx if you have new BASIC 1.
Once initialised, the prompt

ENCODER A/D ?
will appear. This is an invitation to Assemble or Disassemble. (See also Options)
DISASSEMBLE
Pressing 'D' will enter the disassembler. The prompt

D$

will appear and you should type the address you wish to start disassembling from,
followed by 'RETURN'

Fifteen lines of code will now be displayed on screen. There are now three
things you can do

1/ Pressing 'LF' or CTRL J or Up Arrow (depending on which computer you have)
will continue with the next fifteen lines.

2/ Dxxxx will restart disassembly from the address 'xxxx'

3/ RETURN will put you into the command mode of the CEGMON monitor, where
you can call upon all the facilities that CEGMON offers. Pressing '.U' at any time
whilst still in the monitor will re-enter ENCODER at the start up prompt. Pressing
RESET (BREAK on OHIOS) at any time means that you must re-initialise ENCODER
(see abovel).

ENCODER Page 1

ASSEMBLE

Pressing 'A' after initialisation causes the prompt
M/L ?
to appear. ENCODER is now asking for assembly from Tape Load or from Memory.

Pressing 'L' will cause ENCODER to assemble a previously recorded source
file directly as it reads in from cassette. Make sure that you can hear a clear header
tone BEFORE pressing 'L' as a syntax error will cause ENCODER to print an error
message and jump to BASIC warm start.

When assembly is finished, the prompt 'M/L ?' will reappear, allowing the use
of further options (see later).

In tests, ENCODER has been found to assemble from tape at speeds up to
1200 baud, but this naturally depends on the quality of the audio equipment used and
which mod was done to achieve the higher load speed - they don't all work! Higher
tape speeds than 1200 baud are theoretically possible.

A test on assembly speed using the 'memory' mode gave a result of a
thousand lines in 72 seconds - not bad when it takes BASIC 67 secs just to list that
much!

Pressing 'M' will cause ENCODER to assemble source code that has been
written in the BASIC workspace.

OPTIONS

Once ENCODER has been initialised, pressing SHIFT P will jump you to the
ENCODER A/D ? prompt. Users of TOOLKIT II and ENCODER should note that they
use the same I/O vectors and the use of TK II will cancel out the use of SHIFT P.

At the prompt ENCODER A/D ? there are three choices:-

1/ 'RETURN'
2/ 'A RETURN'
3/ 'D RETURN'

will jump you back into BASIC
will jump you into the monitor command mode
will take you back to ENCODER A/D ?

At any time whilst in the monitor, pressing '.U' will jump you to the
ENCODER A/D ? prompt. However, should you RESET M this facility will be
cancelled.

For printer output of source code, use the standard SAVE:LIST format from
BASIC. To output the assembly/disassembly listing, set the SAVE flag, then use either
the 'A' or 'D' mode of ENCODER.

It should be noted that when outputting to printer whilst assembling, the
assembly speed is greatly reduced.

ENCODER Page 2

WRITING SOURCE CODE

The first line<of your source code must contain

*$xxxx or *$xxxx$yyyy
where
XXXX is the address at which the source is to be assembled
yyyy is the final destination address of the code

For example
10 *$1000 $A000

will assemble intoc $1000 code that is finally destined to run at $A000.

If you only specify *$xxxx ENCODER will assemble code to xxxx for use at
the same address.
The equivalent of a REM statement can be inserted into your source code by using a
™" This must be inserted immediately after the operand (no spaces), followed by
whatever remarks you wish to make.

These will be very useful to you if you later wish to find out exactly what
you intended the code to do.

Any remarks will be printed in a listing but do not affect the object code

produced during assembly.

20 :SCRN=$D000; define screen label.

All 6502 instruction mnemonics must be followed by a space or a syntax error will be
generated. Eg:-

30 LDX #$00

Care should be taken when using a mixture of labels and mnemonics to ensure
that a BASIC keyword cannot be formed by a combination of instructions. For
example:-

:TRU NOP produces :T<RUN>OP

thus generating an error message at assembly time.

LABELS

These may be up to four alphanumeric characters in length and must be
preceded by a colon. Eg; :LABL or :X1. If a label is the first statement in a line, a
space must be left after the label. If the label is within a line, do not leave a space.
For example:-

50 :LOOP STA :SCRN,X
Labels can be defined at any point in the listing by typing :LABL=$xxxx where xxxx is
a hex address and LABL is the label name.

Labels can be zeroed out for future re-definition by typing:-

ENCODER Page 3

:LABL=$FFFF

The label does not need to be defined and your source can jump or branch to
an as yet undefined label, the true address being inserted by ENCODER when it
finally finds it.

ENCODER uses the last two pages of user RAM for its labels store, so you
have 512 bytes less free RAM whilst assembling. Only sixty-four labels can be stored
in this area, hence the use of :LABL=SFFFF for reusing labels which are no longer
required.

6502—INSTRUCTION SET: HEX AND TIMING

IMPLIED ACCUM ABSOWTE | 2iROPAGL | IMMEDIATE ABS X ABS ¥
MNEMONIC op|nfslorfalajornfefor|alaforfnlufor|falejor|nfn
ApC [a3 |es|3| 2|92]2 M]3 |43
ano | 0|« |3f2sf3]2)2l2)2|1|a|3]|39]a]3a
As L calz | foejefajois|2 wlz|a
BcC @
BCs |2
BLC 2;
811) a|3f2alalo
BMI @)
BNE [2)
BRL | @)
EF K CARAR
BVC |@
BVS @)
cic CIEREI
o og | 2 11
[ENERE
cuv Be| 2 |1
Cmp wjaflsfesiaj2fcofz]|zfon|«|3]|oe]|afsa
(33 (cl« 3 feefafo|eofa]2
Py €14 l3fcafal2fcof2]|2
DEC CEl6[3]co]s|2 otf7|3
DEX calz |
DEY B8 | 7 |1
torR |0y wfat3tastaloleol2|2|0ja|afsw]als
INC e lajefs|2 7|3
TN X w2
INY w2 .
ime alals
ISR 206 |3 -— =1
toa {m 4} 4) 3as|i3|2av) 2| 2|epfafl3lee]als
Tox |0 R @[3 [Ae| 3|2 Az 2] 2 Bt 3
toy M ac| a|afaefalz]aof2|2|6c|afs3
LSR aa| 2|1 fatfo | 3faefs |2 stl7]3 -
NOP a2 |
ORA o|al3joslalz2]owl2|2]wjalasfw]|alsa
PHA CRERE
PP 3|
PLA |1
PLP 84|
RO 2alz |1 {6 |3f2|s]2 x| 7] 2
T OR A[2|1 |&| 6] 3|57 T 73
R s Sl
Y of«|ales|alafew|2]2|w|]a]la|lF]]?
SEC a2 |1 —
SE0 k2|
ST 7|2 |
s1a 8| «| 3|82 w|sf3fels|s
s1x AR ER]
STy 8| 4|3 fwafz
1aX aal 2 1
AN RERE 3
1S x [NERE]
1aa [INERE
xS eala |
1Y A]2 |1

(11 Add 110 1 if crossing page boundory

ENCODER Page 4

e

Here is

10
20
30
40
50
60
70
80

920

a sample for you to try:-

*$1000;
:SCRN=$D000;

LDX #8005

LDA #$BB;

:LOOP STA :SCRN,X;
INX;

CPX #500;

BNE :LOOP;

RTS;

start address

define screen label
zero out X register
character 187 into acc.
fill screen + offset
step up one

test for 256 steps

if not keep going

finished - let's go home

OND. X) aNO)Y

1 PAGE. X

RUATIVE INDIRECT 7 PAGE Y

PROCESSOR
STATUS COOES

or

or

nlsjorialsjorfn}ein 8D 1 2C

MNEMONIC

K ERED
njefa2fnfs)z

)
N

75
35
16

~

v
. ee
.
e

o

ADC
AND
AS L
BCC
BCS

3|33

588

»

"
IS

BEQ
B1 T
BMmI
ENE

~
N

alelz2for|s |2

03

55
[

~

Teses e e

IXXNY

arjoj2ie|s |z

8s

ofelzlulsi2

Ba

s eele

sifef2jor]el

vee|e
eeaje

@31 Add 210 nif bronch within poge

Add 310 0 il branch 1o onother poge

ENCODER Page 5

INSTRUCTIVES

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX

INY

Instructives are the assembler commands which are translated directly into
machine code. ENCODER recognises the industry standard mnemonics as follows:-

add memory with carry to the accumulator

add memory with accumulator

arithmetic shift left one bit (accumulator or memory)

branch if carry flag clear

branch if carry flag set

branch if equal to zero

bit test (accumulator and memory)
branch if minus

branch if not equal to zero

branch if plus

break program execution

branch if overflow flag clear

branch if overflow flag set

clear carry flag

clear decimal mode

clear interupt mask (enable interrupts)
clear overflow flag

compare accumulator with memory
compare index register X with memory
compare index register Y with memory
decrement memory contents by one
decrement index register X by one
decrement index register Y by one
exclusive OR accumulator with memory
increment memory contents by one
increment index register X by one

increment index register Y by one

ENCODER

Page 6

S E

IMP
JSR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SEI
STA
STX
STY
TAX
TAY
TSX
TXA

TXS

jump to new address

jump to a subroutine

load the accumulator from memory
load the index register X from memory

load the index register Y from memory

logical shift right one bit (accumulator or memory)

no operation
logically OR accumulator with memory
push accumulator contents onto stack

push status register contents onto stack

pull byte from stack - transfer to accumulator

pull byte from stack - transfer to status register

rotate accumulator or memory left one bit

(through carry)

rotate accumulator or memory right one bit (through carry)

return from interrupt

return from subroutine

subtract memory with borrow from accumulator

set carry flag
set decimal mode
set interrupt mask (disable interrupts)

store accumulator contents into memory

store index register X contents in memory

store index register Y contents in memory

transfer accumulator to index register X

transfer accumulator to index register Y

transfer stack pointer to index register X

transfer index register X to accumulator

transfer index register X to stack pointer

transfer index register Y to accumulator

ENCODER Page 7

The 6502 processor offers 11 different addressing modes which can be used on most of
the above instructives. They are as follows:-

IMMEDIATE ABSOLUTE ZERO PAGE (direct)
IMPLIED ACCUMULATOR INDIRECT INDEXED
INDEXED INDIRECT INDIRECT ABSOLUTE INDEXED
RELATIVE ZERO PAGE (indexed)

Here are a few samples of the different ways these modes are used to affect the
LDA instruction, with a BASIC equivalent for those of you who are new to assembly
code:-

INSTRUCTION ADDRESSING MODE BASIC EQUIVALENT
LDA #$20 immediate A=32

LDA $20 zero page A=PEEK(32)

LDA $0220 absolute A=PEEK(544)

LDA $20,X zero page indexed A=PEEK(32+X)

LDA $0220,Y absolute indexed A=PEEK(544+Y)

LDA (520,X) indirect indexed A=PEEK(PEEK(32+X))

LDA ($20),Y indexed indirect A=PEEK(PEEK(32)+Y)

Zero page addressing means that the address that the processor is accessing is
within the range $00 - $FF (or 0-255) only. However, the zero page technique may be
applied to addresses greater than 255 by using the indirect mode.

DIRECTIVES

Directives are used to tell the assembler where in memory to put the object
code, define labels and set up data stores.

Start Address

The synta-lx is *$xxxx or *$xxxxSyyyy and is used to tell the assembler where
the object code is to be stored. See section on source code for explanation of use.

Label Definition

The syntax is :LABL=Sxxxx or JSR :LABL or :LABL JSR :MORE.
All label entries must be preceded by a colon.

ENCODER Page 8

Data locations

There are differences in the way that ENCODER and a standard assembler
handle this subject. A standard assembler contains the directives .BYTE to allow the
entry of blocks of data. However, you need only use the '#' sign (SHIFT3 from the
keyboard) in ENCODER.

The syntax is #SFF#SFF#SFF for hex
#255#2557#255 for decimal
FHXXXXXXXX for binary

The length of the data block can be as long as memory allows.
To enter text use the double quote (") Only the starting quote is required.
"This is the correct way.

If data is required after a text string, a new line must be used starting #SFF
or #255 etc, or whatever bytes are required. ‘

Both the data and text entry descriptions above will allow the bytes to be
entered immediately into the object code. However, if you require ENCODER to
remember where to find the data or text, a label should precede the entry. Eg

:TEXT "This is a sample of text insertion

Standard assemblers also contain the directives .DBYTE and .WORD and these

have the following effects.
.WORD will store the address of a specified label into the current RAM location in
the order low byte/high byte.
DBYTE has the same effect as .WORD except the address is stored in the reverse
order - high byte/low byte. An example:-

LABL=SAABB

.WORD LABL stores $BB and $AA in the next two bytes

.DBYTE LABL stores SAA and $BB in the next two bytes

ENCODER also allows the use of label address storage but uses a different
syntax, as follows.
#:LABL
stores the 16 bit address of the label :LABL (in the form low/high
byte) in the next two bytes.
#:LABL>

stores the 16 bit address of the label :LABL (in the form high/low
byte) in the next two bytes.

:LABL=$1000
J#:LABL will store $00 $10 into the next two bytes
#:LABL> will store $10 $00 into the next two bytes.

As can be seen from the above, #:LABL replaces .WORD and #:LABL> replaces
.DBYTE.

The statement #S$xxxx also replaces .WORD and this function can be used
several times on one line. For example:-

ENCODER Page 9

10 *$1000
20 #Saabb#Sccdd#$eeﬁ#$gghh#$xxyy

The above sample would store S$bb $aa $dd $cc etc from memory location $1000
onwards so as to form an address look-up table perhaps.

ENCODER also contains the facility for off-setting the label by using the
syntax #:LABL+$XX or JHLABL+$XX> where $XX is in the range $00 - SFF, but this
can only be a positive offset. For example:-

LABL+SXX> will add $XX to the address of :LABL and then store the new address
in the form high/low byte. If in the example above, $XX = $80 then $10 $80 would be

stored in the next two bytes.

#LABL+SXX will add $XX to the address of :LABL and store the new address in the
form low/high byte. If $XX=80 then $80 $10 would be stored in the next two bytes.

Another facility available allows ENCODER to select the high/low byte of a label
address as the operand of an immediate instruction.

LDA ##LABL; will load A with the low byte of the :LABL address
LDA #:LABL>; will load A with the high byte of the :LABL address

The labels may be offset by values from 0 - 255 as discussed above. For

Here are two more samples for you to try out:-

10 *$100050300; assembly and destinati

gg ;f)géo'.'THXS IS A SAMPLE; text to ywri‘te to tslcnrztel:n

P -SCR’N—$D300- Equivalent of .BYTE

ot i_DX #_500- H define screen label

PRI LD,A x zero out X register

6 .STA e X 1,X; get new character from text

20 INK; B 4, X3 Ptut to next screen location
) step up one

?80(:1;?\1[13 #15,000(,313 test for null (BYTE CHAR.)

= H if not keep going

110 RTS; finished!

10 *$1000; start address

20 :STOR {#$A1#$20#3A1; look up table named :STOR

30
40

#5207 SA1#$20#FSAL1#$20
#SAL#S20#FSA1#S$20#SA1

50 LDX #$00; zero ou i

L t X register

;g -SI:['O/!\OgDL(?A :STOR,X; get next char from STOR

e 100,X; put to next screen location
H step up one

example:-

10 *$1000;

20 :JUMP=$0000;

30 :STRT LDA #:STRT;
40 STA :JUMP+l;

50 LDA ##:STRT>;

60 STA :JUMP+2;

70 LDA #$4C

80 STA :JUMP

90 :TEXT "This is a test;
100 #$00;

110 LDY {HTEXT>;

120 LDA #:TEXT;

130 JSR $AS8C3;

140 JMP $A274;

start address

set up warm start jump
with the

address of the

start of

this routine

define some text
terminated by a null
set up A,Y

with start address
and print it

do warm start

ENCODER Page 10

?80CBP)\)J< #.$OD; test for all done
109 RTE- :LOOP; If not keep going
H Finished. Let's go home.

NB. You are advised that to enable

! you to use ENCODER to it

extent, you purchase a book on 6502 Assembly Language and Programming. Ilfsycft‘:u::;
a nehwcom:sr to Assembly cod'e (or still confused !), we would recommend that you
purchase '6502 Software Design' by Leo Scanlon. If you are a more experienzed

programmer try 'Pro i :
from PREMIER);. gramming and Interfacing the 6502 by De Jong' (both available

ENCODER Page 11

ERROR MESSAGES

Encoder has full error protection and will produce the following error
messages:-

* No start address (*$xxxx etc.)

L Invalid Label - either you have used more than the allowed 64 labels or the
label contains non-alphanumeric characters.

M Wrong mode. Mnemonic cannot be used in this mode.

N Illegal Number. Number too large or using illegal digits; ie. a decin:xal
number contains non-numeric characters or a binary number contalns
anything other than 0 or L.

(¢] Out of memory. Perhaps ENCODER has just attempted to overwrite its
label store with object code. Only 42 undefined labels can be used at once.
A tip is to write all subroutines early on in the listing.

R Out of Range. Trying to branch to a label that is not within +-127 bytes
of branch address.

S SYNTAX error. Spelling mistakes, etc.

ENCODER Page 12

IMPORTANT NOTICE - ENCODER, its subroutines and all printed matter appertaining
to the use thereof are COPYRIGHT of PREMIER PUBLICATIONS. Copying of the
whole or of any part in any medium other than for the personal use of the original
retail purchaser is strictly prohibited. We are obliged to pursue an active policy
against infringements of our copyrights. PREMIER PUBLICATIONS products are only
available by mail order from the address below or from accredited agents. Each
ENCODER product is uniquely coded.

Quality of workmanship and materials fully guaranteed. Claims under
guarantee MUST be accompanied by the program EPROM/disk/microdisk. Every care
has been taken in the preparation of this product. PREMIER PUBLICATIONS will not
however be responsible for claims of loss or of loss of profit howsoever caused from
the use or content of this product. It is the purchaser's responsibility to ensure
suitability for purpose.

THIS NOTICE DOES NOT AFFECT THE STATUTORY RIGHTS OF THE ORIGINAL
RETAIL PURCHASER.

ENCODER was written by Dr A Eddleston.

<C> 1982 PREMIER PUBLICATIONS World Copyright retained
208 CROYDON RD, ANERLEY, LONDON, SE20 7YX

Telephone 01 - 659 - 7131

