/

the

7

AARDVARK JOURNAL

april 1981 vol 2, no.1

IN THIS ISSUE

I decided to publish virtually the
entire text of the GUIDE TO PROFESSIONAL
FROGRAMMING. Some of it has appeared
in the journal previously, but there is
new material designed for those who want
to write professionally or for the
journal. NOTE- most of the GUIDE was
written & long time ago and I have
myself not followed all the advice that
it gives. Flease don’t bother to write
and point that out to me.

We have a good article from tbhe
British Users Group on machine code. I
had Jjust begun working on a similar
article myself when this one came in.
It is better that what I was doing so we
published it. We’ll try to get further
articles from the RUG but cannot promise
what will happen in the future.

THE GUIDE TO
FROFESSIONAL FROGRAMMING

I am going to make a number of
assumptions about the reader of the
document. I will assume that you know
the basics of programming. I will
assume that you have read 08I°s
Graphics Manual and Aardvarks "Graphics
in BASIC" and that you do not,
therefore, need more information on how
to move things around the display and
how to program special function keys. I
will therefore, dwell on how to make the
programs run on both C1 and C2-C4
systems and on matters of professional
style.

It is important that programs run
on both types of video/keyboard systems.

At this time the market for programs is
about 70% 600 board and 304 8540 or
S40R. -

A program that runs on only one
system, therefore, cuts out almost half
of the potential market. It is
additionally more expensive for us to
handle and much more difficult to place
with dealers as it doubles their
stocking problems. We, therefore, try
not to carry one system programs. We
do do so only in exceptional cases. All
the programs that I have written for 0SI
run on both systems and I am willing to
convert well written programs-but the
commissions are lower for programs I
convert and I will only convert programs
that are written with conversion in
mind.

HOW TO DETECT THE SYSTEM We have tried
a number of methods of detecting the
system type automatically and have found
that the most dependable and simplest
method is to PEEK the keyboard. PEEK
(57088) will return a number over 128 if
the system is a 600 board (C1 or
Superboard) and a number under 129 if
the system is a 540 or S40B. A typical
decision line would read:

100VIDEQ=600: IFPEEEK (57088) <129 THEN
VIDEO=540

The program can then set up and adjust
the variables for screen routine and
keyboard for the system detected.

DUAL FURFOSE KEYROARD ROUTINES

There are three kinds of routines you
can use to do dual purpose keyboard
detection. Which you use depends on the
needs of the program.

if vyou are inputting from joystics or
need a lot of keys detected, the best
way is brute force. Store all the
values for the keyboard in variable
names or in an array and set up a couple
of lines to change the values according
to the system. For instance, if you are
wrriting on a C4F and want to detect the



(1) key, you say-—

F1=128: IFVID=600(REM THE CI1F) THENF1=127
REM DETECTS TOF ROW EITHER SYS
FORES7088,F1:REM FOKEER WITH CORRECT
VALUE.

Fortunately, there is a simple system
to convert the FPEEkKed wvalues for the
alternate system. As the keyboard values
are inverted, you write for your system
and then subtract the FEEKed value from
285 to get the alternate system — like
this.
100F=FEEFK (57088) : IFVID=600THENF=285-F
REM CONVERTS FOR EITHER SYSTEM. The
first system is therefor cumbersome but
simple. Check the keyboard for which
system vyou have. Store the system in a
variable or flag. Change the FOKE values
if necessary. FOKE the keyboard. Store
the FEEK. Subtract the FEEK from 255 if
other system.

The second routine works faster,

takes less code and is preferable for
systems where you can get by with 8
control keys. As explained in our
graphics manual, the state of the
control keys (shifts, cntrl, rpt. esc)
are scanned continuously and stored in
S7100., You can detect key presses by
FEEKing that location without turning

aff the control C scan or POKEing to the
keybhoard. It, therefore, works fast and
is simple to convert to dual usage. As
with the preceding routine, you write
the program to work on your system and
then convert to dual usage by
subtracting the value you PEEK from 255,
with & line similar to the one above
e)xcept that the FOKE is not needed. That
speeds up and siplifies things.

The third method is the simplest to
use and requires no conversion. As
given in ouw catalog, there is a
subroutine in ROM at FEOO that can be
addressed by a USR function. For those
of vyou who do not have a copy of our
catalog, I repeat.

10FPOKELL, O:POKEL2, 283
USR vector)

20X=USR (%) : X=FEEK. (531) (Gives
ASCII value returned by keyboard) REM
SEE AARDVARE CATALOG OR FORMER JOURMALS
FOR DISK ROUTINE.

This routine STOFS FOR AN
cannot be used in real time
programming.

(sets up

INFUT  and

DISPLAYS
Displays are important even if you
are doing utility or business programs,
and vital to games. With some care,
your display routines can be written to
run easily on both kinds of video
displays, and may end up with a program

that runs faster as a freebee benefit.
The goal is to end up with a

program that can be converted by
changing & single line of variable
values. With care you can do a complex
display that runs easily-RBackgammon
displays a complete board, moves pieces
around, displays dice and messages, and
changes from system to system by
changing only two variables—-the line

F3

length and the position of the corner of
the board. Everything else is derived
from those two values.

There should be no absolute values
in any of vyour displays unless the
values will work equally well for each
system.

At a minimum vou will probably need
to assign three variables: Line Length
T(L=64/L=32), Corner of the screen or
some other common point to start both
display. and Width (W-25/W=22 oréd) if
vou plan to center things. You center
by adding W/2 to a corner position.

After you have set up the variable
values with the statement on the first
page, you define the rest of the points
vou use in terms of the first variables.

If vyou want a point 10 lines down from
the corner on both systems, (and
assuming vyou set up corner as one of
vour variables) vyou define the second
point as :F1=CORNER+10XL. To draw a
line across the screen 10 lines down,
the code becomes
100FORX=F2toFZ2+FOKEX, 161: NEXT

Movement is done the same way.
Horizontal movements work the same as a
single system program. Add or subtract
one. VYertical movements are done by
adding or subtracting L rather than
65, 65,31, and 33,

I am not going to give a lot of
specific examples as our programs are
full of them and as you are an expert
programmer, you should be able to get
the specific routines from them. I will
add that vyou cannot trust the 0SI map
for 25x25 display on the Cl1. The
display is closer to 23x30 on most
systems and is not centered as in the
graphics manual. I have included a map
of the corners of both visible screens
and the print positions for mixing print
in graphics.

DON*T SCRIMF ON DISFLAYS

They are the most visible thing
that separates us from 101 BASIC GAMES.
They are what customizes & program and
makes it marketable rather than useable.

That also is true {or business
programs. They sell better if the
displays are pleasing rather than just
utilitarian.

Remember that your printed

statements must be read on both &4 and
25 wide displays. I¥f you put in timing
loops too slow down the printed

material, you will bore some users,
insult others and lose the rest. If you
have to divide the instructions into
sections, end each section with an
input. Try INPUT"READY FOR MORE"j; A%.
No matter what the user enters, the
program will continue. It isn’t
necessary to check for a negative
answer—-they won’t input anything until
they have read the display.

Limit prints to 20-25
lines at a time.

character



N

CONTROLS

One of the most common problems in
programs sent in for evaluation is poor
control layouts. This is a problem in

business programs as well as games, as a
well planned business program may
contain such things as menu selection,
screen scolls, and other special purpose
keys.

I have a private and formerly secret
belief that the first man to write
computer games was a left handed sadist
who hated the potential players and who
was cross eyed to boot.

There is noc other way to explain the
huge numbers of games that now use the
keys (1) (2) (3, and (4) for
controls.— they had to be planned by a
sadist. Consider the evidence.

(1) As a majority of the world is right
handed, the soclitary player has to play
the game with his arm crossed in front
of his body and his wrist bent back at
an eventually painfull angle. If the
victim tires or decides to rest his now
aching limb, his palms will hit every
key on the board, boot the disk,
activate the break key, and scare the
cat. It is a beautiful plan.

(2) The second piece of evidence is that
there is no possible logical connection

between the keys and the control
functions. A typical game will have
movement in 4-8 directions and one or

more special functions like "fire",
"stop","restart", etc. Thy typical thing
is to make (1) move up (2) move right
() move down (4) move lett (5) fire (&)
etc. There in normally no logical

connection between the keys and the
directions or functions, but it does
have one "function". You will beat

your friends all hollow until they learn
the controls - assuming they stay that
long.

Alternatives-

You have to keep two things in mind
for professional and easy controls.

The +First thing is that you have to
have is some logical positional
relationship between the controls. For
instance, if you are going to move a
cursor back and forth across the screen,

use two keys side by side. The two
shift keys are good for this. I+ you
have only one person using the system,

let him use both hands. He can do that.
He isn’t a politiciar. He uses both
hands to drive cars and golf clubs and

he can keep them separated easily. It
also gives a much more spacious feeling
to the game when both hands are used

for contol.

Similarly, if you are moving something
up and down use two keys like the (esc)
and (ctrl) which are up and down from
each other. I would also suggest that as
some of the world is left handed, the
space bar makes an easy to find control
key for all users. - Just don’t use in

i

in conjuction with the (9)
mind that the users have human
hands the are jointed only in limited
manners. They do not have thumbs on
both sides of their hands or growing out
of the wrists so keep the controls
rationally close together.

The second major thing to keep in mind

key. Keep in

sized

is that the controls must be visually
distinct as the players or users will
initially be searching visually between

uses. That gives good reason for using
shift keys (large and distinct) and the
(y) and (.) keys (they have arrows
printed on them). (Esc), (ctrl), (rpt)
and similar keys have the advantage of
being on the edge of the board and
therefore easy to find. Remember that
the user will be looking for the contols
under stress and in a hurry. Make them
easy to find, easy to understand, and
easy to use.

GOOD IDEAS TO LOOK FROFESSIONAL

Do not wuse "Guestion (Y/N)" or
(Yes=1/N0=2) constructs. 08I supports
real string functions and failure to use
them locks amateurish. Simply ask the
question and if it is a Yes/No type

answer, do not specify the format of the
answer. You don’t tell people you talk
too how to answer. No one answers in
French. Use the Left$ function to

detect a "Y" or

you a yes

weird.
Drop

"N" and that will give
or no unless the user is very

the formality. Just as you
don®t tell someone how to say yes, you
don’t say "wish me to" when you mean
"want me to" and vyou don’t say "May
I..." when vyou mean "Can I...". Feople
like to believe their systems think.
Help them out by speaking colloquially.

Do not insult the user. The
novelty of the computerized insult has
worn aoff for all but the newest user.
Do not wuse any end statments, prompts,
or victory announcements that vyou
wouldn’t say in person.

Remember that people want to win
games. They want a good +fight, but
reliable research shows that people will
only continue with a game if they win a
few at the start. No one either likes
to admit that he needs to win or is
willing to continue a game that is
frustrating. Real success calls for
user selectable levels of difficulty.
At least one fairly easy version to get
him started and then a harder version to
keep the interest up. You can get the
varying levels by changing timing,
scoring structures, and the complexity

of the task but note: the levels must
have meaningfully different skill
requirements. Just rushing a game or

making it
count.

impossible to beat doesn’t



Space is limited on a computer
screen—-particularly on the Cl1. If you
have a border with the main function of
keeping things from going ocff the
screen, put the border off the screen.
The Ffirst non-visible space will do as
well and a user limited to a 25 wide
area to play a game or read a display
does not appreciate sacrificing 104 of
+t for borders.

THE AARDVARE RULES OF STYLE

If vou are like most serious
computerists, you have at least one book
on  BASIC STYLE. That puts vyou in a
unique position to benefit yourself., me,
our customers, and the energy crisis.
BURN  THAT BOOE! Most such books are
wrritten by business programmers who use
MINI rather than MICRO systems and think
that everyone has 48k memory or magazine
editors who think that everyone has
large tax deductible system at the
office.

I read one book recently where the
author actually used a full line-72
bytes—to give a simple remark. He
suggested that, as the user is blind and
cannot read the work REM, you preface
the remark with lots of XXXk to make
sure that it is seen.

Our typical user has 4k of RAM and
next most popular size system is 8k. It
doesn”t take many of those remarks to
blow his entire program space. In fact,
our typical user, despite his self image
as a thinker, is really a man who bought
an expensive version of an Atari video
game. He is much more interested in
features than in style. He would rather
have two more targets, one more
function, or another level of difficulty
rather than a really pretty remark.

Our rules of style then, are based
on giving the user the most possible use
from his usually limited system.

RULE ONE---DO NOT GO TO REMs

Do not address branches to REM
statements. We will document every
program, but if room gets tight, the
REMs will appear only on the printed
version. Even if we don’t remove the
REMs, the user should have the option of
doing so if he needs more room for
additions. Therefore never have a GOTO,
GOSUB, or THEN where the gone too is a
REM. All REMS must be removable by
simple erasure.

RULE TWO---USE LOTS OF REMs

This does not contradict rule one.
We mean removable REMs. Nei ther
customers or myself are willing to sort
out an unexplained program. Explain
every variable, identify each routine,
and explain any unusual constructs.
Don"t be afraid to put in more REMs than
the system will run with. I+ you have
followed RULE ONE, we can erase them
before we run the program and keep them
in when we print it.

One REM should always be your name
and address and phone number. Fut it in
as lines 0-5. Your envelope or letter
could be lost or separated, but the tape
will never be separated from program.

RULE THREE-—-DO NOT USE SFACES

Spaces do not make the program more
readable for any computerist more than a
few months into the hobby, and they can
burn up as much as a third of vyour
useable space. One extreme example was
a "9k" program we received recently.
When the author removed the spaces and
remarks, the program ran in 4k and the
market for it was tripled.

RULE FOUR-VARIABLE NAMES

I have taken a solemn oath that I
will burn the next program that I
recieve that has more than 9 variable
names that start with X or VY. BASIC
supports wonderfull variable names like
BALL, SERVE, SIDE, TANk, CAR, SHIF,
FENCE, SHELL, ROCKET, MONEY, CARD, SUIT,
BALANCE, DAILY, MONTHLY, YEARLY, PLAYER
and Author. Use them. They make the
program readable and easier to
understand. Leave X1,X2,X3........X9 and
Y1,Y2,....Y adnausea home.

For the best balance between
clarity and economy, use the full name
first time the variable appears and use
only the first two letters after that.

Aardvark customers are used to a
few conventions in variable names.
These are not reguired, but could make
you program easieir to read.

X,¥,I are used for temporary counters,
usually in loops. They store values
that will not be reused later. If you
need a fourth counter, use N SC or SCORE
is used for score. Cl and C2 or E1 and
E2 are used for the corners of the
screen or edges of the display. The 1
designates upper left, the 1 lower
right. TIME For time. AF for target
positions. This does not follow rule 4
well. It comes from the fact that our
first few games were shooting airplanes
(AF). F is usually reserved for values
from PEEK statements. (P=FEEK...) K is
usually reserved for kKeyboard (57088)
F1=F9 are used for FOKE values for
keyboard routines. L is always line
length. SHELL (SH) is used for any
projectile position.

As it says above, these are very
optional. Several of them started when
the company was new and would be done
different if started now. H X or Y that
the wvalue is temporary and that Cl is
always a reference point in the
upperleft corner of the screen.-unless I
decided to break the rule that time-.
RULE FIVE---MULTIFLE LINE STATEMENTS

The worst possible line of code
that I can think of is

100PRINT. The next three worst are...
1O0OFORX=1TQO30
110PRINT

120NEXT



N\

lines have
They

Multiple statement
several important advantages.
faster, load faster and save
considerable memory on a small system.
Normally a responsible programmer writes
the rough draft in stretched format
(separate lines for FOR and NEXT and so
on) and then retypes the sections into
compact form as each section is
finalized and debugged. It"s more
work, but that is part of what
"professional" means. For NEXT loops on
the same line run faster as the system
does not have to process line numbers on
each loop.

A similar rule applies to short
subroutines. Microsoft EASIC allows
quite a bit of programming on a line
after an IF statement. Do not branch
out to a subroutine unless the business
cannot be handled on the end of the line
or vyou plan to address the subroutine
from several different lines. Branching
to & location, search the line number
for the subroutine, decode the address
from ASCII to Hex, do the subroutine,
and branch back. In a business program
it is annovingly =low and in graphics
game annoyingly slow and in high speed
game it is disasterously slow.

When vyour program is submitted, it
should be precise, clear, documented,
labeled with your name and address, and
compact.

run

RULE SIX THE FINAL ONE!

This is the one that every editor
includes and always has ignored. Do not
waste time and space telling how
wonderful your program is, how it will
sweep the world, "totally change the use
of 081 computers" (a recent line an
author used to explain a trivial utility
program) or how much fun it is. I"m
going to run the program. If it is good
I"11 probably catch on as my I.0. is
slightly in excess of 90 and I have
several years in program marketing.

Use the time and space to explain
features, controls, and constructs that
may be unusual. If it has a subtle use
that is not obvious, explain it briefly
please. (No one ever explained anything
briefly, but I keep hoping.)

I am not trying to imply that a
little enthusiasm for your program is
not proper. I tend to get wound up a
little when I discuss my own work.
However, lets try to keep it down to a
few Hurrahs.

One more item has come
draft was done. We are receiving
programs now with USR machine code
routines in them. Before publication,
we need a commented dissassembly of the
machine code routines. It need not be
fancy, but we will need to explain to
users what the funny numbers do.

up since this
more

i)

The BASICs of machine-code
(reprinted by permission
of British Users Group)

had a fair
"All

Over the past year we've
number of comments on the lines of
this machine—-code information vyou
publish is +Fine: but I don"t even know
where to start, so it’s no use at all".
Most people get on reasonably quickly
with BASIC--it is, after all, designed
to be a beginner’s language—--but without
some basic idea of its concepts and
terms, machine-code programming just
can’t make sense. The standard books on
62002 programming, such as Zaks®
Frogramming the 6502 and Leventhal’s
excellent 6502 Assembly Language
Frogramming, do assume that you know
rather a lot about the subject before
they start--or else, like Zaks, tend to
confuse rather then help! So for the
next few issues we’ll be running this
series on basic principles and practice
of machine—code programming., to be based
on, and linked with, 0SI°'s BASIC. We’ll
assume no knowledge of machine—-code at
all—-—so bear with us if you do know the
basics!—=— but we will assume that you
have a working knowledge of programming
in BASIC, for games and the like rather
than for complex mathematical juggling.
BASIC is described as a “high-level
language” for programming computers.
But it’s high-level only in the sense
that vyou don’t have to think much about
where things are -- the language
translates things 1like PRINT statements
for you, for example, without you having

to know what is being PRINTed to., where
it is in the system memory, how it is
accessed, or anything of the *lower’

level at all. But precisely because it
handles these things for you, the
language itself limits the flexibility

with which you can use the system. It
simplifies programming for some kinds of
work——in BASIC's case, for basic
mathematical functions—--while making
others, such as text—-matching and fast
graphics, well-high impossible. To do
these elegantly and, above all, fast,
they need to be done at a lower
level ——the machine-code level.

BASIC itself, of course, is made up
of these lower-level machine-code
instructions. In ROM BASIC, these can
be seen by PEEKing the values stored in
addresses 409460 to 49151 (we’ll be
dealing next issue with the meanings of
the values vyou’ll +ind there). Each
BASIC instruction consists internally of
a long trail of routines and
subroutines——every POKE has to be
checked such that its value doesn’t
exceed 255, or its address exceed 65535,
for example—--which is why clearing the
screen by POKEing it with blanks is so
agonizingly slow. A single POKE takes
about 15 milliseconds; the equivalent
LDA/STA machine-code instructions take
about 15 microseconds——significant
difference!



Working in machine-code, however., can
be more than a little
daunting——particularly if your only way
of working with it is through 0SI°s
next-to-useless monitor in the standard
SYNMON, SYN&OD  and UK101 monitors. As
vou'll know, pressing "M" in response to
the reset "D/C/W/M?" prompt gives you a
four digit mumber (an address) and a two
digit number (the value at the address)
in the top left of the screen—-—and
that’s vyour lot! O0SI does publish a
cassette version of their very good
Extended Monitor (ExMon) ——supplied as
standard with UK101ls, otherwise about 8
from most dealers. Otherwise we would
recommend the CEGMOM monitor (not least
because we wrote it!)-—its machine-code
monitor is designed to be compatible
with ExMon, if somewhat less flexible,
and it does have the advantage of being
built—in to the ROM monitor rather than
a Ffive-minute load From cassette each
time. We will deal with the use of the
standard SYNMOM monitor, but for
simplicity most of our examples will use
the ExMon or CEGMON formats.

The difficulty with machine-code
programming is that while the numbers in
that four-digit section are relatively
easy to understand-—-namely a system
address——the two-digit numbers can mean
anything, dependent upon context. The
number 4C (and it is a number, & number
in hexadecimal notation) could be a
simple number (in other words 76 in
decimal); part of a larger number stored
in a number of bytes; an index, or part
of a look-up table; an address, or part

of one; an instruction (JMP-—"jump’® to
the address defined by the following two
bytes); the letter "M’ in the ASCII

code; or all manner of other things. It
all depends on its context; it all
depends on where it is. Hence a couple
of tools we'll describe in more detail
next time: the assembler, which allows
you to assemble machine-code
instructions into a program with some
semblance of clarity: and disassembler,
which allows vyou to disentangle a
string of hexadecimal machine-code
values into something reasonably
decipherable. Both are essential for
serious machine-code values work; but
for the smaller routines we’ll be
starting off with they aren’t all that
important. 08I’s assembler, for all
systems including the UK101, is
available from most dealers at about
f20; while there’s a disassembler
already built into ExMon, and we’ll
also give a listing for a disassembler
in BASIC in the next part of this
series.

The other catch is that almost all
machine-code work is done in
hexadecimal ——counting in
sixteens—-rather than the decimal that

EASIC uses. "Hex® takes a little
getting used to, but once vyou do know
| & it will make the layout of vyour
system a lot easier to understand. If
vou®ve ever wondered why your screen
meEmor Yy, for example, starts at such an
6dd number—--53248--it’s because in hex
it is actually a nice round number:
pOOO. Decimal numbers count from 0-9,
then A-F (F is thus fifteen in decimal),
and only then adds one to the next row.

The largest number a single eight-bit
byte can handle is 255, or one less than
256,2 (2 "overflows’, leaving an
effective ‘all-zeroes’ in the byte).
Describing a full eight-bit byte in
decimal is tedious and misleading,
especially as the 6302 processor has a
separate RBCD (binary coded decimal)
‘decimal’® mode of operation which
doesn’t quite appear as true decimal on
the outside. Counting in whole bytes,
in 2546°s, is hopelessly impracticals; but
half a byte (nicknamed a ‘nibble® !)
holds up to one less than 2, or up to 15
in decimal (the processor counts from
O-thus there are actually sixteen
possible numbers in & nibble). We can
thus represent the contents of any byte
by two hexadecimal numbers: AF=173,
4C=76b.

To reduce confusion, particularly when
using an assembler, the convention for
6502 or 6800 processors is to prefix a
hex value by a ‘dollars™ sign: 35 is
fifty—five, while 35 is eighty—-five
(S5xlé, +5) in decimal. (7-80 assemblers
use a different convention: hex values
have an °H" suffix, thus SSH). Don™t
use the $ prefix when working with the
machine-code monitors, thoughjthey only
know about hex, and will only get
confused if vyou try to tell them
otherwise!

Writing in machine—code is rather
like writing in a wvery tightly limited
BASIC. You have only three variables
which you can use directly--the main
registers A,X and Y——although you can
operate on the rest of the memory with a
very restricted range of functions. You
have a very limited set of commands and
functions--no large-scale functions like
X or MID$, only the ability to copy or
change the contents of the registers or
of single memory locations. So programs
have to be worked out in far more detail
than they would in BASIC.

However, it’s often easier to plan a
machine-code program by writing it in a
kind of °“dummy-BASIC’. The system’s A
register, or Accumulator, is used by
almost everything—— a kind of high-speed
messenger . The other two main
registers, X and Y, tend to be used as
counters or pointers—-hence their
description as “index registers’. I+ we
treat these as



Machine—-code instruction...BASIC

LDA. s e aeu e s s =.
LDXuw o uwmwnnmus S
LDY.wunoennanes S

TAX e e v maww e X=

TYA. wwnns . A=Y

INXw o e v wmwnmme X=X+1

STA. e nwunnsssssa=AOrPOKE...A

We then get into the subtle game of the

6502 s " addressing modes’. Unlike the
Z-80, which has different instructions
faor everything, the 6502 and 6800

processors use the same instruction 1in

to increase programming

A JMF or
memorys; a branch
precise. The
followed by a

value as a "sign”
meaning "--7
is —-128 to +127;
next byte ,so the
-126 to +129
itself.
e

For demonstration,

the most
screen—clear.

different ways. i : > e .
flexibility while (in principle at ;WD D*fléézl :
least) maintaining some semblance of creen wi FOR
comprehensibility Thus the LDA

instruction has a number of variations:
LDAH#$20. . ... immediate’ . .vuweas =32

LDA$20. . uw Tzero-page’ .. e .-« A=PEEK (32)

LDASOZ220. « v u v s ‘absolute’ ... v« A=PEEK (2%256+32%1)

LDA$20, Xuwuwun ‘zero—-page indexed® A=FEEK (32+X)

LDA$2020,Y.... absolute indexed’ . A=FEEK (Z2X256+32%1+Y)
LDA($20,X) au.. indirect indexed’ . A=FEEK (FEEK (32+X)
LDA($20) ,Y.. .. indexed indirect?®.A=PEEK (FEEK (32) +Y)

The last two may seem unnecessarily
complicated, but they are used a great
deal to simplify the handling of look-up
tables and the like. We’'ll be using a
'STA indexed indirect® for a fast
screen—-clear routine at the end of this
article.

Most programming uses loops,
conditional loops and branches.
does these with FOR:NEXT,

IF/THEN, ON/GOTOorON/GOSUR, GOTO
andGOSUR. In machine code there are
equivalents, but they sometimes work in
a slightly different way. In
particular, the IF/THEN tests are done
against particular bits or "flags®™ in a
separate ’status register’, referred to
as the "P" register:; the much-used RER
and BNE (branch if equal/not equal)
tests check if the top bit in that
register is set or clear respectively,
for that bit is set if the last LD.. (or
some other “move® instruction like ROL
or INC) resulted in a zero value.

BASIC

JMP$0020. .4 ...4...60T032
JSR$0020. v s unan GOSUR32

BNE. .wsessssennaslF (last value)
BEQ..ovswsesnnasas IF(last value)
JMP ($0020) .uewaas (P jump indirect?®)

The last one is something you can’t do
in BASIC! It’s used by the SYN&OO and
CEGMON monitors to pass BASIC’s input
and output ‘vectors® through RAM, to
allow you to drive your own devices
directly from BASIC--but more on that in
a later part of this series.

The

NEXT—— which is messy

TPOKE? the screen

is slow. For a C2

of the latter would
FOR X

JSR point to
to forward 129,
branch instruction 1is
one-byte
‘displacement’ --which
flag,
or back.

from
It takes a little getting used

anywhere in
to be

can only have a
top-bit set
The maximum range

but this is from the

effective
the

range is
branch op code

we’'ll show one of

called—-for routines—-— a fast
In 08I°S RASIC, you have

options:scrolling the

X=1

TO 328

FRINT =

and inelegant; or
with blanks’—--— which
the shortest version
be+

= 53248 TO S8295

FOKE X, 32 : NEXT which, at a standard
IMHz «clock speed, takes a good
half-minute. The BASIC version of the
fast machine-code screen—-clear is

rather more tangled:

10......A=208
200 i u 0 « Y=0

30..ewa HI=285 : FOKE HI,A
404400 LO0=254 1 POKE LO,Y
S0.s....X=4 : REM on 2k screen memory

(C2/4, C1l-E,
60w, A=32
70 eun. . POKE
PEEK (HI) +Y,A

etc)

X=8

(FEEK (LO) +256 X%

B0....uY=Y+1:IF Y=286 THEN Y=0
F0uuena IF Y<20 THEN GOTO 70

100.....POKE HI,
1104400 o X=X-=1

FEEK (HI)+1

120.....IF X<>OTHEN GOTO 70

130.....RETURN

<»0 THEN GOTO...
=Q0THEN GOTO
GOTOFPEEK (32)

Try running this as a

BASIC

program—-—you®ll find it will take nearly

twice as long as
screen with
is as follows:

*branches’ ——-BEQ, BENE, BFL, BMI , BCS, BCC, BVS, BVC——we” 11

mostly leave till later, but there is
one point about them which is important.

the simple
blanks”.

*POKE the
The machine code



A9DO. e v LDA#4D0. ... .. 1 AOOO. .. ...LDY#$00......3zero  index for

later 8SFF..... OSTAHI . cc e v :point  the LO(HI pair

B84FE. .. STYLD. e aneswns :to the beginning of screen

A204. . ..., LDX#$04......508 for 22K screens

A920. v wws LDARS20,. . .. .. 3ABCII ‘“space” 9I1FE..... LSTAWLDO) Y. wwiblank
the current location C8........ INY.aecaosaana sbump up current location
DOFE......BNE-G..ununun rand  loop back until Toverflows’

E6FF.veees INCHI..conmus sbump up to point to next “page’

CAG 516w DEXwaencosoas icheck last page not done

DOF&.enn.. BNE=~10..uennn rand clear next page if not

(1 © . e s RTBenenunenus ielse return

This gives you a subroutine that will
clear the screen in about one hundreth
of a second—-—around 500 times faster.
The catch is that you have to be able to
get at it somehow! Although the routine
itself is relocatable——it has no
absolute addresses within it-—it has to
be put somewhere. On the assumption that
it will be used with BASIC, we can place
it in the "free RAM® area in page
2(around 576 (bl0)-7&60(b10) —--%0240 is
probably the safest all around.

Using the standard SYNMON/SYN&OO
monitor, type. (for address) 0240/ (to
input data as hex values) amd then each
hex pair, separated by "RETURN? (<
) E AL *DOC FA0C FO0 *885 and so on to
DO« *F & »60« >, Each of these values
should ’roll” into the two-digit part of
the displays; the two-digit area, to be
replaced by vyour new value. After
vou've pressed “RETURN® after the last
byte, the &0, the address counter should
read 0287.

With EXMON, type 0240, then each
value separated by LINE-FEED. With
CEGMON, type.0240 then type each value
separated by, (comma), LINE-FEED or
RETURN--it’s probably simplest to type
them is as in the assembly listing, such
as:

A%, DO

AQ, 0O

Since this is stored in that °*free RAM™,
it isn’t wiped out by BASIC when you
cold-start. But it is, of course, lost
when you turr the power off. We can
presume that you don’t want to have to
type it in with the monitor each time
you start your system! But RASIC can’t
use hex——it only knows decimal--so we
have to go about it another way. One is
to convert the whole lot to decimal DATA
statements, and FOKE them in at the
right addresses: FOR X = 5§76 T0O 598 :
READ Y : POKE X,Y : NEXT DATA 169, 208,
160, ©, 133, 255, 132, 254 DATA 162, 4,
169, 32, 145, 254, 200, 208, 251 DATA
230, 2855, 202, 208, 246, 96

A final problem, for this time, is to
connect this routine to BASIC in such a
way that it can be called direct as a
subroutine within BASIC. There is a
provision for this, in the USR((X)
function. As usual, 0SI°s description
of this "manual’ is both garbled and
wrong!

USSR (X) is used as a means not just
calling a machine-code routine, but of
transferring values to it if required.
We don’t need that part at the moment;
the only thing we need to know is that
the BASIC statement X=USR(X) jumps to a
machine—-code subroutine pointed to by
two locations. In the BASIC manual we
are told that these are 23IE and
23F--which appears to be true for disc
systems under 65D, but not for BASIC in
ROM. The right locations are (decimal)

i1 and 12. They need a two-byte hex
address, in the right order and, of
course, converted to decimal--just to

make things easier? The right order is
the low byte first; a peculiarity of the
6502 which apparently allows it to run
faster. If the start address of our
screen—-clear is a 576(b10), convert it
to hex:$0240, The high byte is %02, and
goes in 12¢(b10); the low byte is %40, or
64(b10), and goes in 11. Thus FOKE 11,
&4 : FOKE 12,2 sets up the USR function
to point to owr screen-clear at $0240,
S76(b10) . Note, though, that although
the screen then——in fact to point at the
FC(function call) error-—and will need
to reset after cold-start.
To set up the screen-clear:

10 FOR X =576 TO 598 : READY : FOKE X,Y
: NEXT
20 DATA 1469, 208, 160, 0O, 133,
254
30 DATA 162, 4, 169, 32, 145, 254, 200,
208, 251
40 DATA 230, 255, 202, 208, 246, 96
50 POKE 11,64 @ FOKE 12,2

Thereafter, to call the routine:

kJ

55, 132,

X=USR (X)

Ci1F  HEAD LOAD/UNLOAD
MODIFICATION
BY EDWARD J. KEATING

One of the many questions that 0SI
owners have asked relates +to the
operation of the mini disc drive. Why
doesn’t the disc spin down or the disc
head unload from the disc.

As to the guestion of drive spin up
or down, in the interest of increased
throughput 08I has decided that the disc
should remain spinning because it takes



1.0 seconds to  insure that the drive is
up to  speed. (300 rpm +/- 1.3%) The
line from the disc drive controlling
motor on is always grounded at the
interface connector board that plugs
into the 610 board. One of the problems
that exists in using motor on commands
is that no obvious feedback is available
from the drive to determine the disc
speed, other than counting index holes
against a processor timing loop.
Additionally there is also no indication
that the drive is even powered up, hence
the reason that no "ERROR 6" will be
seen by 0865D. (the status line from the
P1A is grounded to always return a true

signal.) The life of the motor as rated
by MFI, the makes of the drive, is
guoted as approximately 28500 hours can

be obtained. The cost of the
replacement motor from MPI is %$30.00 but
labor may approximate that. (meantime
to repair is quoted at .5/hour)

One modification that can increase
the life of the drive is exceedingly

minor. After I received a mini disc,
610 board and copy of 0868D to add to a
‘naked® superboard, one of my first

undertakings was a complete disassembly
listing of the operating system. One of
the interesting routines found was
inside the floppy disc driver module.
This routine was responsible for timing
the head setting time and toggling &
line +from the FIA FR7 (pin 17) which
ends up on connector J3 pin 1 after
going through a 7417. (U75) The cable
connects this signal to pin 14 of the
mini disc interface which is identified
as DRIVE SEL 3Z or DSZ. The subroutine
in the driver was being faithfully
called to turn on the bit after a seek
request , but before and read or write
request. The other half of the routine
was just as faithfully called after the
read or write to tuwn the bit off
(ground true signal). As the C1F only 2
disc drives, I wondered if this might
not be a superfluous carryover from an
a8’ floppy disc driver. Since the C1
has access to just about all bootstraps,
the 5 and 8° bootstraps are both in the
monitor rom area even if addressed at a
non—runnable location. Consulting the
MF1 interface specification, the disc
head can be loaded by either drive
select or motor on but not an external
source. Examining the schematic of the
disc drive resulted in the modification.
In essence, you must break the
connection between pin 14 and pin 1 of
the dip header plus (which was head load
with DRIVE SEL 3). I did this on a
separate dip header plug and replaced
the entire shunt. After this
modification the DSZ or DRIVE SEL 3 line
will now leoad or unload the head and the
drive will make clicking sounds. Also

remember that no increase in delays are
necessary because the routine always did
exist in the system for head settling
time anyway. _

On a 2 drive system this
modification may require an additional
"AND" gate to mask DSZ2 with the current
drive select, otherwise both disc heads
will load or unload at the same time.
This extraneous system, but may become
annoying after a time.

This modification has been done to
several ClF's with no apparent problems.
In fact it allows easier removal and
re-insertion of diskettes without
bumping the disc head causing the ERROR

S.
A 55:232 '
LIPPER Fi15HT CORLEE
oF DISK BOARD —.
DETAIL — 3
1 S NS
ouT
3 -] 12 r———:
4 |e¢ ot 2F ! e
Llo 13 n ¥
e [ %

WE GET LETTERS

CARL M. KING, SARASOTA, FLA.

I have picked up some excellent
suggestions from the JOURNAL. In my
major program, which I call COGO
Surveying, I have occasion to tabulate
the results of a series of calculations
in a table of itemized coordinate pairs.

Earlier I had decided that the
tabulation would look much nicer and be
more readable, if we could justify the
decimal point location in each column,
much as it would appear on an adding
machine tape. Well, I worked out a
slow and byte consuming routine for
doing it, but I was not entirely happy

with' ite. Isn"t BASIC amazing! You can
obtain the same result in more than one
Way. My method was to calculate the

common  log of each number, and subtract
the characteristic from the TAR spacing.

It worked, but it was slow and
e)xpensive in program steps.

NEW JunPEE o



I was thrilled with the suggestion in
the first issue of the JOURNAL on page S
- "STRINGS FOR DIGITAL MANIFULATION."

So now I have a neat new routine, which
vour readers might find helpful and
instructive, and I am pleased to
contribute the following sample
program:

E00 :READ X:Y=10:G608UR

N=N+1:FRINT Nj

=000

210 READ X:VY=28: GOSURSOOO: FRINT:
GOTOZ00O

5000 W=ARS(X) : Z=LEN (STR®(INT(W)):IF

W<l AND W=3,01 THEN Z=1

S010  IF Z:x7 THEN Z=7

5020 FRINTTAB(Y-Z) Xj3: RETURN

&O00 DATA 12F456, 0654321, 12745.6,
654321, 1234.56, 6.54321

6010  DATA 123.456, 65.4321, 12,3486,
654,321, 1.23456, 6543.21

6020 DATA . 1234546, 65432.1, 0123456,
654321, 00123486, 6343210

SO0 DATA 1234560, 00654321, 2.14189,

b4 T
IRIFLE3

314.159, 10.1,

MR. CHARLES STEWART, ADRIAN, MI

Here a couple of simple machine
language programs which give the CI1F the
following functions. (note they should

also work on the C4)
Control-L places wunit in load return,
clears as usual
Control-5 places unit in save mode
Escape - performs list function
Rubout - machine screen clear

Listing #2Z is the machine code
utilized, Listing #1 is the basic POKE
program. Listing #3 is the same routine
with the reference to RUROUT removed and
input routine referenced to the
beginning of the ClF cursor control
program. I+ listing % is loaded with

cursor control it gives all cursor
functions plus the control functions.

LISTING #1

60 FORX=218T0249: READA: FOKEX,A: NEXT

70 DATA3Z, 186, 255,201,12,208,3, 32, 139,2,55, 201

80 DATA19,208,73,32, 150,255,201, 127,208,3,76
90 DATAZ4,2,201,27,208,3,76,181, 164,96

100 FOR X=546T0567:READA: FOKEX, A NEXT

DOED: s wsw ENE HEREZ..:

UO0EF. v JMF #0022, .3 execute screen clear

O0OF3.HEREZ CMF #%$1R.: cmp to escape

O0FS. s 0w ENE END...:

OOF7 4o ass JMF $A0RS. 3 execute list

O0OFA END RTS.eaunwas —

0222 canmw pHA. ... .. .3 push A to stack

0225 vwww LDA#$20...3 load space character

022 e nne LDX$#$00...35 load accx with O

0227.CON.STA $D0O00, X; store on screen

0220, ... STA D100, X3 "

022D wsus STA D200, X5 "

Q2D v o o e STA D300, X3

L0 1. S INXa wwmnses 3 increment

0234, . ... ENE CON....3: branch back to $0227

02760 0 nnns FLA. e s s v ;3 pull A from stack

Q2375w - RTS8, e s e e : return from subroutine
Listing #3

240 FORX=218T0Z249: READA: FOKEX, A:NEXT

DATAZZ2,42,2,201,12,208,3,32,139,255,201

DATA19, 208, 3,32, 150, 255, 234, 234, 234,234, 234
DATAZZ4,234,201,27,208,3,76.181.164.96
FRINT"XCONTROL VERSION #1"

PRINT: PFRINT

FRINT"ESC LISTS":PRINT"RUEOUT GIVES SCREEN CLEAR"
FRINT"CONTROL S=SAVE":FRINT"CONTROL L=LOAD"
FOKEST6, 218: POKES37, 0

250
260
270
280
285
290
295

300

DAVID RODENEERGER, COLUMEUS GROVE, OH

I  have
manths now,
of poking

used my 0SI C4F for about 6
and have become very tired
26832,1 every time I bring up

my system from a cold start. So I
decided to do something about it. After
looking over the schematics, I found
that the problem would be very easy to
solve. All that is needed is to
connect a wire from one of the
integrated circuits to the break key.
Then when vyou bring the system up and
hit break, the color and sound is

automatically reset to off.

RS LiFT 7THIS EMP

fgg;k_ OF RESISTOR
® Koz 8D
L4

A

[ 1z

LIFT

110 DATA72,169,32,162,0,157,0,208,157,0,209,157,0,210

120 DATA157,0,211,232,208,241,104,96
130 PDKEII,34:POKE12,2=POKE536,218,:PDKE537,0

160 X=USR(X) : PRINT"XCONTROL VERSION #1":PRINT"XEY CHARLES A. STEWART"
165 PRINT:PRINT

170 PRINT"ESC LISTS":PRINT"RUEOUT BIVES SCREEN CLEAR"
180 PRINT"CONTROL S = SAVE:PRINT"CONTROL L = LOAD"

3

| &
7 BZES

(,\,7‘L?”¢\3

0DE4 HERE CMF ##%13. ., cmp to control 8

200 NEW OUak

LISTING #2 | o '

|
O0ODA. ....JSR$FFERA i input subroutine = Lz’
00DD.....CMP #$0C...; compare to Control L b
OODF.....BNE HERE...; branch if not equal 540'3,)5'7 E
O0El.....JSR $FF8E..; execute load ~ -
H]

O0E6&.....BNE HEREL..:
DOEB.....J8R $FF96. .
OOEE.HERE1 CMF #$7F.;

execute save
cmp to rubout

10



The first thing that must be done is
to remove the six screws from the bottom
plate. Then revaome the ground wire from
the bottom plate. Next turn the
computer upside down with the keyboard
to your left. Remove the bolt from the
lower left corner of the S02 board. Now
remove the two connectors from the lower
right and remove the 502 board. Set it
aside. Now refer to the IC layout for
the 540 board. Locate IC U4G. Attach a
wire about 18 inches long to pin one of
the IC U4G6 and route it over to the
break Key. Attach the wire to the pin
closest to the front of the key board,
on the break key. This pin goes to the
reset pin on the microprocessor.

The next step is to reinstall the 502
board being careful not to bend the pins
or the board. You could damage it.
Locate the microprocessor on the S02
board. This is the largest IC on the
board, 40 pins. Locate the two 4,700
ohm resistors at one end of the IC.
Remove the longest wire of the resistor,
closest to the microprocessor, from the
board. This finishes the modification.
We remove the resistor because there is
already a pull up resistor on IC U4G pin
one, s0 vyou don’t need two. Also, it
isn’'t good practice to have two pull up
resistors on the same pin.

The chip you hooked the wire to is a
flip—flop and pin one is the reset. So
when vyou bring this pin low by hitting
break, vyou reset it along with the
processaor. Have fun!

GEORGE FISHER, ARLINGTON, VA

Received my order and the back issues
of the Aardvark Jownal'. Was most
pleased with the Journal, as I am a
newcomer to the "info-gap" world of 0SI.

My experience began about a month ago
when I acquired a Superboard II.
However, this turned out to be the new
production board (series 2 or revision
D, 1980) and it has a number of
changes/features different from its

predecessor. As you may not have
| encountered this yet, I will try to give
you a summary of the differences (as far
|as I have been able to go). The
| documentation is not one of the
| improvements.

1. New circuits have been added to
provide an automatic reset on power—-up.
Also, this new circuit is designed so
that the <BRK> key must be held down
about 3 seconds to initiate a reset. (A
big help for fat fingered typists.)

2. The board comes with the R&S-232C
circuit fully populated and wired.

3. The connector J4 has been changed to
a Z-pin molex which is used for output

(noise) of the DAC. The DAC is now 8
bits, and has the components (resistors
and diodes) installed and must be
enabled via the program. (Foking various
values into location S5296) The
keyboard busses which had been brought
out to the J4 connector are no longer
available at a connector.

i1

4. There are a few other new 1LL's on
the board and three new empty sockets—-to
accommodate color video expansiocn—-one a
8728, one a 2114, and the third is &
connector for color board
interconnections.

S Two pre-recorded tapes in addition
to the demo tape are also included. One
is called Video BSwap, which changes the
video drive routine and gives an
optional 48 character % 12 line video
output. The other, is a program which
permits the computer to be used as a
(almost dumb) terminal. Now for what
didn"t come with the computer. There
were no schematic diagrams or part
layout diagrams. ( I called 0SI and
asked Afor "Customer Service", but I was
told by operators all such calls or
ingquiries must be made to their
dealers....). A helpful dealer did send
me Xerox copies of the diagrams, a bit
hard to read but better than nothing.
Also, there are no instructions on how
to connect up the RS-232C or modem
outputs in the manual. The connector J2
(which has the various in & out data
connections) has a plug on it with three
jumpers. Yet no info is provided on
what these leads do or should go to for
other configurations.

C.W. AIGELDINGER, AMHERST. VA

Not only does the addition of the
Aardvark Sound Gen. Board open new
possibilities of generating sounds and
computer generated sound effects for
programs etc., but the board alsoc has
special treat.

The board
and 9FF? off

decodes addresses 9FF8
the address buss using
2-74307s and one 74LS138. These
addresses are dedicated to enable the
sound generator and its many functions.
Well the 74LS8138 (3 of 8 decoder) also

generates & more distinct addresses.

These addresses are generated, but they
are not used by the sound board and can
be used +for any pupose where 1 out of

685536 addressed are needed.

One example of using these
addresses: This is a sample CIF
Modification which will give the user
programmable full screen This is a
sample CIF reverse video under keyboard
or program control. On power—-up the
modiftication is disabled (normal video)
and will only switch to reverse when
prompted to do so by keyboard or
pragram. It requires minor modification
to the CIF and minimum cost when used
with the Aardvark Sound Board.

This modification requires the
cutting of the runs going to pins 4 and
S of U70 on the CIF. Once this is done
then short wires can be run to a second
board containing the 74L875 and 74LS09.

Once the modification is installed
it works like this:

On power—-up the 74L574
preset to & hi condition on
which is the controlling

flip—flop is
its @ output
input to



essentially and exclusive or package_
formed by the 74LS00 and U70. (when Q is
hi normal video is displayed. When @ is
lo reverse video is displayed.)

When reverse video is desired ayl
that is done is to use the command: FOKE
40958, 00

Either in immediate mode or ffom
program control and the display will
reverse to restore the display to normal
the same command is used again and the
display will return to normal. Any data
from O to 255 (decimal) can be poked
into 40938 dec. (9FFE Hex) Since the
data is not used (only the actual
enabling of the address is nece;sary)

1§ the command is used in a for
next loop:

10 FOR R= 1T0O20

20 POKE 40958, 00

0 NEXT within another program
then a striking attention getting
display follows. This is useful to
bring attention to any part of a program
(errors etc.).

DECODEGY AB-AIS ADDPRES<. DEcor€ D
S 4 b yo  9rFEe S
74L5
t%_ 128 — i FF mﬁfae
P2 &— =y FFA
Ao e—dsor 8 = y3 FFB
Al ‘__Z_-,umoae L Y 4 gFFe .
Az <3 M éci;;ze//’::c
l_'l;_..y‘., dFFE A DDRESSES
LT0, AL '3

o
FVWA>+$V
i 3 Lg:££FMﬁL

fl‘n )Q_

*=

DICK SWEET, ST LOUIS, MO

Tack this short sub-routine at the
end of any documented program, turn your
cassette on to record, and type
RUN&3000. When the program is finished,
load the new tape on top of your
original program and have a condensed
version ready to run.

Two cautions: Please make a tape
of your well documented program before
running at 463000, and never make your
REM statements start at anyplace but at
the beginning of a program line.

REM ERASER

63000 I=PEEK (124) %254+ (PEEK(123)):
SAVE: FORX=748T0OI: REM FIND THE END OF
THE PROGRAM AND LOOP TO IT

63010  IF FEEK(X)=142 THEN 7?PEEK (X-2)+
(256XPEEK (X-1)) :REM LOOK FOR REM
STATEMENTS AND SAVE ON THE TAPE THE LINE
NUMBERS THEY AFFEAR ON

63020  NEXT: ?63000: 763010: 763020:REM
ERASES THE REM ERASER WHEN THE NEW TAFE
TS LOADED.

TODD BAILEY, GREENVILLE, OH

To eliminate the annoying little
bug that vyou get when combining the
MINOS game with the ClE chip (the maze
takes forever to come up and sometimes
never does), add the following lines to
the program:

9?7 FOKES&60,H+6: REM H=HORIZONAL
SIZE OF MAZE

1207 LO=0:REM SET NEW COUNTER

1275 LO=L0O+1: IFLO = PEEK(560) THEN
RETURN: REM INCREMENT COUNTER, COMFARE
COUNTER TO SIZE OF MAZE AND KICEKE OUT OF
LOOF WHEN READY.

Also ClLE (and CZ2E)
enhance the AARDVAREK adventures by
taking advantage of the machine code
save to preserve games in process. FPEEEK
memory location 133 and 134 (DEC) to get
the LO and HI bytes of the top of your
program, including all variables and
strings. If you are saving an ADVENTURE
running in 8K RAM, just use $00 as the
low byte and 420 as the high byte. This
saves everything up to 8k. When you get
to the point that you want to save your
program, hit the BREAK key and answer
"M’ to the D/C/W/M prompt to go into the
monitor mode. Hit "8" tao start the
SAVE  mode. Enter your starting address
(60300 for the base of a EBASIC program),
then enter the end address, hi byte, low
byte, (remember to change the DEC FEEKs
from BASIC back to HEX to use with the
monitor). Enter your restart address
(in this case use $FE70 to jump back to
the load mode. After you have saved
this onto tape, enter °8° again to go
back to the save mode. This time use a
starting address of %0000 and an end
address of %0086 with a restart address
of 0000 and save this on the next
section of your tape. The program is
now saved. To load it back in, cold
start your system in BASIC. Then BREAEK
and go to the monitor mode, hit jump
back into the load mode to laod vyour
pointers, and then jump to a warm start.
After the 0K message, run the
program with a GOTO(line number of the
"your command" line. Do not use the RUN
command as it will overwrite the
variable vyou just loaded. You are now
right back where you left off.

owners can

GARY WHEELER, SAN DIEGO, CA

I was quite pleased to see the CIF
video mod in youwr December journal. I
did however have a little bit of trouble
building the mod.

First of all, the resistor of the
123" is unlabelled. When I ‘called
Aardvark, either Jane or Judy told me
it was 200 ohms. This worked fine,
although I had to replace the 47pf
capacitor with a .001 uf capacitor.

Secondly, I had some stability
problems. This didn"t bother me until I
shortened the resistor leads to a bare
minimum with no improvement. To work,
the circuit requires some capacitive
coupling between the HS and the STOF
lines. Lack of this gives grounds for
the "fuzzies". To cure this, disconnect
pin 1 of the 123 from the RC network

12



from pin 2 and connect it to pin 5,
the S8TOF line. This locks the video
clock to the HE line and cures the
fuzzy character problems.

Finally, I had some wrap—-around
problems. Although this is a quirk of
my monitor, others may have the same
trouble. Its symptom is having the
white bands, resulting when you stop the
clock, reflected halfway across the
screen. The cure is a simple one, change
the white bands to blanks. This simple
circuit does that:

———: ) To R51,R58

the Superboard doesn’t
S0 you must use

and

pin 6 of U70
STOP

Unfortunately,
have a spare AND gate
YOur owr.

Although, I had & couple of minor
problems, the mod works great and I am
very happy with the results.

While the 32x32 display created by
this display is good. a 32x64 display is
ultimately needed for some applications
i.e. text editing etc. Wouldn’t this
scheme work? Connect two more 2114°s to
the VA and VD lines of the video
circuitry. Connect pin 8 of both new
rams to the unused multiplexer of USS.
Supply the appropriate inputs to the
multiplexer and then connect pin 10 of
both rams to the appropriate pin of U20.

With this installed, adiust the video
clock to a frequency twice that needed
for the 32x32 display. This should give
a 32x64 display to Superboard ocwners.

EARL MORRIS, MIDLAND, MI

The February issue of the Aardvark
Journal contained an article on reducing
cassette loading errors. I would like
to suggest a hardware change and a more
scientific manner of making the timing
adjustment.

Below is shown the input circuit for
0SI's cassette tape interface. This
circuit has two problems: The input to
the amplifier has no D.C. path to ground
and the input is coupled by a capacitor
but since the amplifier has a very high
input impedence, response extends to low

frequencies. A cheap and simple fix is
to install & %$.05 resistor from the
input capacitor to ground as shown. I
used a value of 27k ohms. This now
gives the amplifier a D.C. path to
ground and creates a high pass filter
with a corner freqguency of 600 cps.

Noise and hum at 60 cps are attenuated a
factor of 10. After making this
modification, the volume control setting

on youw recorder will be much less
critical.
The second suggestion regards

adjusting the timing of the one-shot.
Do not confuse this with the baud rate
adjustment which is czet at 4800 cps as

Apo 27 Eﬁy-,

4

per the previous article.
circuit determines

The one-shot
whether the input is
at 1200 or 2400 cps. The trip point of
this circuit should be near the
geometric mean (1700 cps) of the
frequencies. Correct adjustment
requires that an audio oscillator be
connected to the cassette input port.
If a voltmeter is connected to the 7474
flip—~flop of the cassette circuit, the
meter will change from 5 volts to'zero
as the frequency of the oscillator
passes through the trip point. If the
frequency is much defferent
cps. the one-shot trimpot
adjusted. Anywhere between
1800 cps should be good.

two

than 1700
must be
1600

and

TR EFE INAT,

KERRY LOURASH, DECATUR,
SCROLLING?

ILL
DOWN THE AVENUE

Here's a short ML routine, relocatable
anywhere in memory, that scrolls the
screen  down instead of up. It has the
exact opposite effect of a PRINT that
doesn’t print anything.

When I was a novice (not long agoe!),
the screen scroll was a fascinatin@
mystery. Now that I know how it works,
I still think it°s a neat trick. Let’s
take the CIF as an example. The video
display is organized as 32 rows of 32
columns. If you look at the table in
the back of the 081 graphics manual, you
see that each memory location from %DOOO
to #D3IFF is assigned one small area of
the display. Those of you who have done
some graphic experiments know that, to
make a character move straight up., you
subtract 32 from its present address in
Video memory and put the character in
that position.

The scroll routine in BASIC does the
same thing, but on a larger scale.
Starting at the top of video memory, it
transfers the contents of each mehory
location to the row above. When the
scroll is completed, the home line, the
line the cursor occupies, is clea?ed.
Only the home line must be erased, since

each byte that is moved takes the place
of the old byte in that location. The
scroll routine is part of the video

output routine located at $BF2D.

My scroll routine moves each byte down,
not up. Zero-page loctions $50-51 hold
the target address and $52-53 hold the
source address. The Y register is used
as a counter for the individual video
addresses and the X register counts the



pages (1 page equals 256 bytes). Since

DOWN SCROLL ROUTINE there is nothing to scroll into the top
line, it must be cleared of the garbage
ADDRESS CODE MNEMONICS ¥—-CHANGE FOR CLIF loaded into it. By the way, this
0130 AYBF....LDA #$EF XDF load start address garbage is the result of trying to read
2 8550....8TA $50 non-existant memory. The home line is
4 A9FF....LDA #$FF also cleared, although this feature is
& 8552....5TA $52 aptional. Turn it off with a FOKE3I46,96
8 A9D7....LDA #$D7 %D and restore it with POKEZ46,162. The
A B851....8TA $51 routine is meant to be used as a USR
C B8353....8TA %53 routine. Set the USR vector with a
E AZ08....LDX #08 x4 i page counter F'UKEII,“B:PDHEIZ, 1. Be warned that the
0140 AOOO....LDY #00 : byte counter routine is located in the stack and
2 b130....LDA (50),Y ;3 scroll 1 byte could be partially destroyed under some
4 Q152....8TA (52),Y conditions. To relocate the routine,
6 88......DEY copy the bytes in a different section of
7 DOF9....ENE %0142 memory with the monitor or change the
? Cé51....DEC $51.....3;next page values of X in line 10 of the BASIC load
B C653....DEC 53 program. Just for fun, see the effect
D CA......DEX.........;decrement page counter of changing location 3I05(normally $EF
E 10F2....BFL $0142 or 191 decimal). When using this
0150 A240....LDX #$40 %20 jerase top line program with the Aardvark cursor
2 A920....LDA #4220 control program, the address of the home
4 9DOODO..STA $DOOO, X line should be changed. For the Ci1F,
7 CAvuinns DEX change the first data element in
8 DOFA....EBNE $0154 lineS0(96) to &4. I"'m not sure about
A A240....LDX #%$40 %220 iblank home line the C2FP, but I think it should be (192)
C 9DCOD7..8TA #D7C0O, X %D3I60, Aardvark-D3I40 to 128.
F CA......DEX
0160 DOFA....EBNE $015C

J

? 60......RTS

I

EASIC LOAD-CZ2F

10 FORX=304 TO 354 :READA: POKEX,A: NEXT

20 DATA169,191, 133,80, 169,255, 133,82, 169,215, 133, 81, 133, 83, 62
30 DATAB,160,0,177,80, 145,82, 136, 208,249, 198,81, 198, 83, 202

40 DATAL16,242,162,64,169,32,157,0,208,202, 208, 250, 162, 64, 157

50 DATA19Z,215,202,208, 250, 96

BASIC LOAD-CLIF

10 FORX=304 TO 354 :READA: POKE,A: NEXT
20 DATAL69,223,133,80,169,255, 133,82, 169,211, 133,81, 133,83, 162
30 DATA4,160,0,177,80, 145,82, 136, 208, 249, 198,81, 198, 83, 202
40 DATA16,242,162,32,169,32,157,0,208,202, 208, 250, 162,32, 157
50 DATA9&,211,202,208,250,96

DEMO FROGRAM

100 FOR Z=1TO32: PRINT: NEXT

110 POKEL11,48: FOKE12,1:FORY=1TO9:PRINT"A("Y") "z : INFUTA(Y):
X=UBR (X) t NEXT

120 FOKE346,96: FOKEI0S, PEEK (305) -1: DATAR,E,V,E,R,S,E

130 FORI=1TO7:READA%: PRINTAS: X=USR (X) : PRINT: NEXT

140 FOKE346, 162: FOKEZOS, FEEK (305) +1

The AARDVARK JOURNAL is published six times a vyear by AARDVARE
TECHNICAL SERVICES, LTD., 2352 South Commerce, Walled Lake, MI
48088. Subscription rates: $9.00 per vyear ($14.00 overseas).
Copyright 1981, AARDVARK TECHNICAL SERVICES, LTD. EBulk rate postage
(permit #5) paid at Walled Lake, MI, 48088

14



NEW AT AARDVARE
The single stepper/monitor is
available on tape for $19.95.
has come
machine
now have
and Monster Maze

now
Dave Edson
through with a couple of new
code goodies for the ClP. We
Interceptor, Collide ($9.95),
($12.93) for the CI1F.

We have a new 1&6k ram board for the
CiP. It comes with instructions to
adapt it to the CZ2/C4/C8BF°s also. The

bare board is available now for $39,95.
An  assembled version of both the FROM
Burner and the Memory boards is in the
works and both should be available
before the next issue comes out.

Chuck BScotts’ super super disk is now
available. It has a 14 character file
name capability, the new machine code
editaor, and a disk manager with
capabilities like disk packing. It is a
great 65D executive - and we are

selling it as Superdisk 11 for $39.95
How about this for a great diagnostic.

We have a dicsk speed analyser on disk.
It reads out disk speed accurate to 1/2
Z. It sells for $8.95.

CLASSIFIED ADDS

CiF MINIFLOFFY (MODEL 1) 24K RAM.
THIS IS AARDVARKS workhorse CiF. It has
been used a lot but is still in good
shape. Can be had with 32k ram installed
for 950,

RADIO SHACK QUICK FRINTER II AND 4
ROLLS OF PAFER. $140 Todd Bailey. (513)
782 508F or (513) 548 1312 after 5.30
P.m.

$895.

AROUT THIS MONTH'S FROGRAMS.

I am going to include Battlefleet and
Slashball as this months software. The
ostensible reason is that they show good

contirol setups and that Rattlefleet
demonstrates the mixing of FRINT and
FOKE graphics on the same screen.
Rattlefleet alsc demonstrates that you
can pack a lot of data and do a lot of
programming  in 4k, I gspent a lot of
time getting it in what was then a

standard sized system.

Those are the official reasons. The
real reason is that they are two fun
games that everyone likes when they play

them and which no one buys because they
don’t describe well in a catalog. I want
to show them off and have people enjoy
them and since no one has bought them,
we have to print them here.

Slashball is diabolical. It looks

simple, but gets very hard after the
first few rounds. The controls on that
one are simple but take real skill to

master.

BATTLEFLEET was one of the first
programs I ever wrote and one of the
main reasons I purchased a computer. It
is a very complex form of BRattleship
that I once played with friends.
Unfortunately, the bookkeeping involved
made it impractical to play without a
computer. There is virtually no luck
involved in the game!

The computer will hide 3 ships in the
grid. They are two dimensional, 2x6
squares and may be horizontal,
vertical or on a 45 degree slant from
lower left to upper right. They will not
averlap but may touch. The really hard
part is that vyou will have to fire
volleys of &6 shots at a time and will be
told only how many hit — not which ones
or on what ships. That you will have to
test to determine.

You fire with a gunsight that initially
appears in the upper left corner of the
grid. You move the sight with (<) and
(#) and the (U) and (D) keys. (guess
which is which). You fire at the grid
point under the sight with the (F) key.
At the end of six shots. the system will
display the number of hits. When you
have sank all 3 ships (or run out of
shells) the system will displays the
grid image. To help you sort out
valleys, there is a Review command (R).
To review, press (R) and then tell the
system which wvolley vyou want to start
with.

Just a reminder — with the office

now located away from our home, we can
only answer questions Dn.orders (or
anything else that requires us to
consult the files) during the hours of 8

aM to & PM (Mon - Fri) when the foige
statf {namely Judy) is here. After 3,
we can take orders (or questions if you

don’t mind calling back the next day for
an answer), but that’s about the limit.
We're still getting phone calls at
strange hours (2 AM and so on).
Rodger’s schedule varies a lot now as
administrative duties take more and more
af his time, so we’'re often asleep
then, and as the phone rings at the
hoUS@a s s v wsus



10 PRINT:FRINT"BATTLEFLEET" : FRINT"COFYRIGHT 1978 R. OLSEN":FRINT:FRINT
15 PRINT"HIT SHIFT TO START"

17 IFFEEK (57088)=10RFEEK (57088) =254 THENR=RND (8%9) : GOTO17
20 LL=64:GL=5408%: IFFEEK (57088) *127THENLL=32: GL=53608

Z0 DIMST(180) (HEZ0) ,B(12) ,A(12) ,B(12) ,C(12)

32 REM DIFFICULTY DETERMINES NUMBER OF SHELLS.

35 INFUT"HOW GOOD ARE YOU (1-10)";X:8k=179-6%X

36 REM MAKE SOME SHIFS

40 FOKES6P00,0:F=F+1:FRINT"WORKING ON SHIF "P

SO L=1:M=INT(PKRND (8) +1) s N=INT (2%RND(8) +1)

60 ONRND (8) ¥3+1G0TO70,110,90

69 REM HORIZONTAL SHIFS

70 S=LLAN+M: FORX=0TOS: FORY=0TO1: 0 (L) =8+LL*Y+X

80 L=L+1:NEXTY,X:G0TO140

89 REM VERTICAL SHIF

0 S=LLXM+N: FORX=0TO1: FORY=0TQS

100 QL) =8+LLAY+X:L=L+1:NEXTY, X:G0TO140

109 REM SLANT SHIF

110 M=INT (P%RND (8) +1) s N=INT (2%kRND (8) +&) : S=LL¥M+N

120 FORX=0TO(S% (LL-1))S8TEF(LL-1) :FORY=0TO1

150 QL) =INT(S+LLXY+X) :L=L+1:NEXTY, X

140 ONFGOTO1E0, 160,180

149 REM STORE SHIF A

150 FORM=1TO12:A(M)=0(M) s NEXT:GOTO40

139 REM CHECE FOR OVERLAF AND STORE SHIF R

160 FORM=1TO12: B(M) =0 (M) : FORN=1TO12: IFE (M) =A (N) THENSO

170 NEXTN,M: GOTO40

179 REM STORE SHIFC : SHIF FOSITIONS ARE A(X) ,B(X),C(X)
180 FORM=1TO12:C(M)=0(M) s FORN=1TO12: IFC (M) =A(N)ORC (M) =E (N) THENSO
190 NEXTN,M: W=1:FOKEBYSS, 4%: FOKEBYS6, 37: GOSUR4 30

191 REM FOR BASIC IN ROM REFLACE 8955 AND 8956 FOKES WITH
192 REM WITH POKELL,O0:FOKELZ, 253

198 REM TO SEE SHIFS, THIS LINE [5 195G0SUER 470 (DELAY): GOTO3O
200 PN=GL+LL:FOKEFN, 4%: FORM=1T0b: P=FEEK (FN)

209 REM FOLL KEYRBOARD Y=ASCII OF KEY FRESSED.

210 X=USR(X) : Y=FEEK (9815)

211 REM FOR TAFE SYSTEMS Y=FEEK (31X): FOR CIPMF Y=PEEK (9834)
215 IFY=70ANDF=&1THENFOKEFN, 42: F=42: 0 (M) =PN-GL: GOTO280
219 REM REVIEWS TO SEE IF ANY SHOTS FIRED AND (R) FRESSED.
220 IFM=1ANDY=82ANDI »1 THENGOSURSSO: FRINT"READY?" 1 X=UBR (X) : GOTO410
230 POREFN, F: IFY=44THENFN=FN-1

240 POREGL+LL ,32: IFY=46THENFN=PN+1

250 IFY=68THENFN=FN+LL.

260 IFY=83THENFPN=FN-LL: X=RND (8)

270 P=PFEEF (FN) : FOKEFN, 43: GOTO210

280 NEXTM: I=I+1

289 REM CHECE FOR HITS Q((W)=CURRENT SHOT. H(I)=TOTAL HITS
290 FORM=1TO&:FORN=1TO12

300 IFE M) =A(N) THENHA=HA+1:H(I)=H(I)+1

310 IF@ (M) =B{N) THENHE=HE+1:H(I)=H(I)+1

J20 IFR (M) =C(N) THEMHC=HC+1:H(I)=H(I)+1

329 REM HA,HE,HC ARE HITS ON SHIFPS A,RB, AND C.

IO NEXTN:NEXTM

339 REM COUNT UF SUNK SHIFS

340 M=0: IFHE>11THENM=M+1

350 IFHCHL I THENM=M+1

260 IFHAXLL THENM=M+1

16



FRINT"WE HAVE SUNK"M"ENEMY SHIFS"

FRINT" WITH"HA+HE+HC" HITS"

IFM 2 THENSOO

IFW+5 58K THENFRINT "SORRY, WE'RE OUT OF AMMO"

TEW+5 58K THENFRINT "HERE® 8 WHERE THEY WERE":GOSUR470:GOTOSZO0
KEM ADD SHOTS TO STORAGE (ST=STORABE W=TOTAL SHOTS)
FORM=1T06: ST (W) =0 (M) : W=W+1:NEXTM

REM READS OUT EACH SHOT 80 FAR

C=13N=13:G05URY GOSUBRS20: GOTOZO00

LS LEFT
GROUND

NT"O

3 A5G 73890
440 FORM=1TO9:FRIMNTM" == "INEXTM
450 FORM=10TO1S:FRINTM  ==s=ss=ssss=m== s NEXTM

460 RETURM

4469 REM FPOKES IN SHIF LOCATIONS

470 GOSUBR4Z0: 8=GL:FORL=1T012

480 FPOEES+A (L) ,49: FOKES+R (L) , S0: FORES+C (L) , 51 : NEXTL
490 RETURN

500 PRINTYCONGRATULATIONS YOU":

510 PRINT"SANE ALL THREE SHIFS WITH "W" SHOTS

S20 GOSUER470

529 REM CLEAR VARIAEBLES FOR NEW GAME

SA0 FORX=1TOW: ST (X)=0: NEXT: W=01HA=0: HB=0: HC=0

540 INFUT"READY TO START AGAINT"j;A$:F=0:RUNZO

550 R=1:FORX=1TOZO:FRINT:NEXT: PRINT"WE HAVE FIRED "I" VOLLEYS
560 INFUT" WHICH ONE DO YOU WANT TO START WITH"iN
570 IFN:ITHENPRINT"NOT FIRED YET":FPRINT:GOTOSS0

579 REM FOKE UP FAST VOLLEYS FOR REVIEW OR NEW TURNMN
580 C=N¥&-5: GOSUREZEO

590 FORX=CTOC+S5: FOKEGL+S8T (X) 4 H(N) +48: NEXT

600 IFR=1THENX=USR (X) : GOTO&Z0

610 FORX=1TO700: NEXT

619 REM LOOFS TO NEXT VOLLEH UNLES Cr=W (TOTAL SHOTS FIRED)
620 IFC+&<WTHENC=C+&: N=N+1:G0OTO390

GEO R=0: RETURN

10 PRINT:PRINT:PRINT"SLASHBALL": FRINT

20 PRINT"COPYRIGHT R. OLSEN 1979":PRINT:FRINT:FRINT

30 W=64:L=W:C1=53248: C2=58230: KR=37088

40 VEB=600: IFPEEK (57088) < 128THENVE=340: GOTO70

50 W=25:L=32:C1=53315:C2=584205

60 SP=57089

70 INPUT"DO YOU WANT INSTRUCTIONS"jA%: IFLEFTS (A%, 1)="Y"THENR0O
80 FRINT:FRINT: INFUT" HOW HARD DO YOU WANT IT (1-11)"3X:D=(13-X)%100
85 ADT=16:B=26:A%=""

90 FORX=1TOZ2: PRINT:NEXT: FORX=C2-6XLTOCZ2: FOKEX ,32: NEXT

95 OF=4096: FORX=C1+0F TOC2+0F : POKEX, 431 NEXT

100 TU=0:R1=0:R2=0

105 REM DRAW SCREEN

106 FORKES683Z,7 J

110 FORX=1TOW: POKEC1+X,88: POKECZ2-X,B88:NEXT

120 FORX=1TO32: FOKEC1+X¥L,88: FOKECZ-XXL,88: NEXT

130 AF=(C2-C1) /2+C1l: IFVE=600THENAF=53743

145 As="":FORX=1TO20: At=A%+CHRS$ (FEEK (AF—-10+X) ) : NEXT

150 FOKEAF, 161:FOKEAP-1,161:FOKEAR+1,161: IFVB=540THENFOKEAP+2, 161

17



ADD=16:IFPEEH(KE)ﬂ}iZQANDPEEK(H35i?lEéTHENléO

1 FN=INT (S5106+56%RND (8) ) : MF=-L

DE=D/25

FOKEFN, B

FORX=1TODE: NEXT: DE=DE~1

FS=FEEK (PN+MF) 1 IFPN<C1THEN165

TU=TU+1: IFTU>DTHEN772
IFFS=88THENGOSURS000 : MF=—MF : GOTOI00
IFFS=92THENIZ0: REM \

IFFS=47THEN4OO: REM /

IFPS=161THENS40: REM TARGET

F=FEEK (KE) : IFVE=600THENF=255-F: REMSCAN KB
IFF=30RF=5THENADD=ADD~-1: IFADD<OTHENADD=0
IFF=ZTHENFOKERPN+MF , 92: FORX=1T060: NEXTX: GOTO180
IFP=STHENFOKEFN+MF , 47: FORX=1T0&0: NEXTX: GOTO180
FPOKEFN, 32: FN=FN+MF : FOKEFN, B: GOTO170
FOKESF, 90: POKEFN, 32

FN=FN+MF: REM SERVICE \

IFMF=1THENME=L: GOTD460

IFMF=—1THENMF=-L: GOTO460

IFMF=L THENMF=13: GOTO460

IFMF =L THENMF=—1: GOTO440

BOTO460

FOKESF, 99: POKEFN, 32

FN=FN+MF

IFMF=1THENMF=—L: GOTO460

IFMF=—1THENME=L: GOT0O4&0

IFMF=LTHENMF=~1: GOTO46&0

IFMF=—LTHENMF=1

FS=FEEK (PN+MF)

FOKESF, 0

IFFS=92THENI40

IFFS=47 THENGOTO410

IFPS=88THENZ0O

IFFS=161THENS40

FOKEPN+ME , B: PN=FPN+MF: GOTO170

REM END OF TURN DISFLAY AND SCORE

C=FEEK (FN) : IFC< *47ANDC< »92THENFOKEPN, 32
FOKESF, 100

IFAD=16THENRS$=" SERVE AGAIN  ":GOSUEBB30:GOSUEB40:GOTOS80
TU=0:A$="":FORX=1T020: A$=A%$+CHR$ (PEEK (AF—~10+X) ) t NEXT
FPOKESF, 190

B$=" SCORE "3 GOSURBIO

GOSUES40: IFB=26THENR1=R1+ADD

BE$="FLAYER ONE"+STR$ (K1) : GOSUBS30: GOSUERE40
FPOKESF, 150: IFR=226 THENR2=R2+ADD

Bé=" PLAYER TWO"+STR$ (R2) : GOSUEBI0: GOSUES40
GOSUES40

FOKESF, 255

IFR=226THENE=26: B$=" PLAYER ONE UF ":GOTOS7S
FOKESF, 199

B=226: B$=" PLAYER TWO UF "

POKESF, 220

GOSURSZ0: GOSUEB40: BT$=Reé: Re=" SERVE "3 GOSUEB30: GOSUEB40
FOKESF, 150

B$=ET$: GOSURBZ0: COSURS4A0

POKESF, O

FORX=1T020: FOKEAP—10+X, ASC (MID® (A%, X, 1)) : NEXT
GOTO1S50

IFR=26THENRZ=R2+25: GOTO780

R1=R1+25

IFR2 *R1THENFORX=1TO30: PRINTTAR (X) "FLAYER TWO WINS":NEXT:GOTO800
IFR1 *R2THENFORX=1T030: PRINTTAR(X) "FLAYER ONE WINS":NEXT:GOTO800
FORX=1TOZ0: PRINTTAR(X) "A TIE GAME'!!"::NEXT
PRINT" SCORE FLAYER ONE "R1:PRINT" FLAYER TWO "R2
R1=0:R2=03 TU=0: GOTOSO

18



T FORX=1TOLEN (B$) : FOKEAF~7+X,ABC (MID$ (B%, X, 1)) : NEXT:RETURN
840 FORX=1T0&00:NEXT: RETURN
Q00 FORX=1TO27:FRINT:NEXT
$10 PRINT"I WILL PUT A TARGET":FRINT"IN THE CENTER OF THE
920 PRINT"SCREEN":FRINT"YOU SERVE THE BALL":FRINT"WITH THE REFPEAT KEY
9% FRINTYTHE LEFT SHIFT WILL PUT":PRINT"A / IN FRONT OF THE EBALL AND
940 FRINT"THE RIGHT SHIFT WILL FUT"
950 FRINT"A \ IN FRONT OF IT":FRINT"YOU STEER THE BALL RY
9460 FRINT"BOUNCING IT OFF OF THE":FPRINT"BARRIERS":
970 FRINT"THE IDEA IS TO HIT THE":PRINT"TARGET IN THE CENTER OF
980 PRINT"THE SCREEN":FRINT"ALL SLASHES EXCEFT
985 FRINT"A FEW HARD AGAINST THE":PRINT"SIDE ARE FERMANENT
987 INPUT"READY TO DISCUSS SCORE";A$:PRINT:FRINT:FRINT
990 PRINT:FPRINT'YOU GET 16 POINTS MINUS":FRINT"THE NUMBER OF SLASHES
1000 PRINT"YOU USE 7O HIT THE TARGET
1010 PRINT"BEST SCORE FROM A ROUND":PRINT"IS 15 POINTS AS THE
1020 PRINT"GAME DOESN®T COUNT":PRINT"ACCIDENTAL HITS FROM
1030 PRINT'LUCKY SERVES. IF YOU GET":PRINT"ONE YOU HAVE TO
1040 PRINT"SERVE AGAIN
1050 FRINTYTHERE IS A 25 FOINT":FRINT"RONUS FOR THE LAST HIT.
1060 PRINT"THE HIGHER THE DIFFICULTY":PRINT"THE LESS TIME YOU HAVE
1070 FPRINT"TO SCORE":FRINT:GOTOBO
1200 Cl%C2=CORNERS: B=BALL:FPN=FPOSITION NOW:FS=FEEkK NEXT FN:MF=MOVE
1210 ADD=SCORE:R1%RZ=FLAYERS SCORE:EBT$TEMFORARY:AFP=TARGET: W=WIDTH:L=L1I
5000 FPOKESF, 100: FORX=1T015: NEXT: FOKESF, 0: RETURN

GIFT CERTIFICATES
(or see what they got!)

Limited space in last month’s journal kept us from printing who
was awarded gift certificates for what articles, so here goes ———
$60 certificates went to:
Thomas Owens for video pokes
Eob Woodward for the reverse scroll program
Tim Walkenhorst for the disk buffer article
N. Feliss for the parallel printer article
kerry Lourash for the E.Z. LISTER

30 certificates went to:
Charles Stewart
Russ Terrell
Curtis Preston
415 certicates for the other letters that came up with hints,
programs, or bright ideas.

This month, $&60 certificates are going to:
Edward keating
C.W. Aigeldinger
Charles Stewart
Todd Railey

30 certificates go to:
Gary Wheeler
Earl Morris
Carl King
kerry Low ash
Dick Sweet

19



0. K. We're tryving

new format ran from

here is a semi-new format.

print is done on our new EFSON and reduced about
background (the COMPRINT uses
able to shoot a little darker
appreciate opinions

On the
"take pity an
bept the column

ta
We' ve

silver
so it will be easier to read.
style

the response
bi-focals, so
but the

to the

white

printer should be
We would
right this

AARDVARE TECHNICAL SERVICES, LTD.
2EE2 South Commerce

Walled Lake, MI 48088

(F13) 669 - E110

k3
o)

| BULK RATE
iU.SPOSTAGE
l PAID

WALLED LAKE, M|

PermitNo. §




