.

—PBI machines. We

the

AARDVARK JOURNAL

october 1981

IN THIS ISSUE

The
by Howard
Input

and also provides a simple
calculator for use with any system. We've
covered the Input—a-kKey routine before, but
never in this detail. From the guestions that
we have gotten this past month, it would seem
that there are a lot of people interested in
it.

We also have yet another update to the
Word Processor. This one is a routine that

llows easier input of lower case letters.

We’ve got a fun program that will dump out
the BASIC Source Code so that you can see how
each line actually looks inside the machine,
and a Supertrace program.

We also have & lot of material on Disks.
About once a year we try to dedicate a large
portion of at least one Journal to Disk
users. We have instructions on modifying disk
BASIC to use the features of the ClE ROM,
some notes on PICO DOS, & couple more disk

The "Beginners Corner" is back this time.
one 1in this issue was written

Drake. He goes over the 081 Key
routine in detail

modifications and improvements and
corrections to some prior mods. We also have
the story of one man who put on his own disk

using a non 08I disk. We also have a couple
of long articles on Speeding up Random Access
Files on disk.

We also have a lot of programs submitted
by Stankewicz and Robinson. S & R are the
pair that did the excellent Night Rider, the
original Maze, and several other good’
programs for ouw Catalog. Now they’ve
contributed a couple interesting programs to
the Journal also.

WHAT*S NEW AT AARDVARK

AARDVARK now carries D & N Micro Services
boards and Mittendorf boards and kits.

The D & N Micro products line is
particularly recommended for the 48-pin buss
have been recommending

:heir boards for so long we finally decided
we had to carry them. The line runs all the
way from combination memory and disk

vol. 2, no. 4

controller boards that sell bare for %350 up
to 24k assembled memory and disk controller
boards for $380. They also offer a lot of

neat I/0 boards, a proto-type board, a
backpane and even a neat little board that
puts all of those onto a ClPF. It's an

excellent line, and we’re proud to carry it.

Mittendorf offers a number of interesting
kits. Their most famous one is the Video
Conversion kit for High Res Graphics for the
CiF. We'll have a complete review of that in
the next AARDVARK Journal. We have one in
now, but we just haven’t had time to test and
to write the article up for this issue.

From the program side, we have & couple
new games by that famous Stankewicz and
Robinson team that designed the original

Minos game. The best new game is Night Rider
($14.95) . This is partially machine code
high speed version of an old arcade idea. In

it you see a road stretching out before you
twisting and winding as you race your Ccar.
The graphics are excellent and very
realistic.

They have also now given us 0SI GRAND
($9.95). This charming little dittie was
initially misnamed by the authors "“DEAD
BRABIES". It emulates a hotel fire and gives
you the job of catching people tossed off the
roof and bouncing them into & waiting
ambul ance. When you miss they splatter
beautifully and the only problem with it is

that sometimes children tend to miss
intentionally.
The same team has come up with a new

arcade game called Galactic Debris, a good
version of Fotato Chip Invasion. However,
the game goes on for many many variations and
levels of difficulty and takes several days
to master completely. It is an excellent

arcade piece.

For disk users, we have an all machine
code full screen editor for the CI1P MF. This
one was done by Dave Fompea who has written
frequently for this Journal. It is available
on the new Superdisk for the CIP for $24.93.
It is also available to people who have
previously purchased the old Superdisk for
$9.95. It certainly does make the C1F a much
more usable machine.

BEGINNERS CORNER X

08I KEY INFPUT & OTHER IDEAS
BY HOWARD G. DRAKE

¥NOTEX (We have been over this before in
various places, but this is the best
explantion vet of the valuable trick.)

"Thats so simple: Why didnt 08I
tell us"
0S1's polled keyboard is a very

powerful tool. However, when I bought
my C2-4PFP over two vyears ago, there were
no instructions on how to use this
keyboard. I had had my 2P for two
months before I heard about the 08I
Graphics Manual. This manual shows how
to scan the keyboard from a BASIC
program by POKEing and PEEKing values at
memory location S7088. (If this doesn’t
sound familiar, immediately call vyour

08I dealer and ask for the graphics
manual.) This method using location
57088 is okay if only a few different
values must be inputted and real time

operation is required. However, if

real time operation is not required

there is a simpler method that I prefer.
This method makes use of a routine in

ROM. The code required is:

100 POKEL1,Q:POKEL12,283: X=USR(X):

A=PEEK (531)

To see how this

this simple program.
100 PRINT"PLEASE HIT ANY KEYS8"

110 PRINT"0-9,A-Z,0R PUNCTUATION MARKS"
120 POKE11,0:POKEL2, 253

130 X=USR(X) 1 A=PEEK (531) REMPEEK (9834)FOR

C4PMF, (9815)FOR C1PMF

140 PRINTA,CHRS® (A)

150 BOTO130

160 REM FOR DISK ELIMINATE LINE NO.120

AND REPLACE USR(X) WITH DISK!"GO

252B"IN LINE130

works, enter and run

not new and has
appeared in several of the small 0SI
related newsletters. (The place I first
saw it was in the AARDVARK Catalog.)
However, in this article I"11 pursue the
ideal further and show an application.

This method is

HOW IT WORKS

In the monitor ROM is & routine
that scans the keyboard and stores the
ASCII value of the key pushed at memory
location 531 decimal. By using the USR
function in BASIC, we can jump to this
already written routine in ROM. This
routine scans the keyboard until a key
is pushed. There is no time limit as to
how long this routine will sit and wait
for a key to be pushed. (Thus this
method is not suited to real time action
games.) When a key is pushed the ASCII
value of the symbol on the key top is
computed and this value is stored at
location 531. Control then returns back
to the EBASIC interpreter and our
program. All we need to do then is to
see what value is stored at location 531
by using the FEEK function.

The USBR function transfers control
from & BASIC program to & machine
language subroutine whose starting
address is stored in memory locations 11
and 12. Thus before calling the USR
furnction in line 130, we must store the
starting address of the keyboard scan
routine in memory locations 11 and 12.
This is done in line 120.

Try running the program above and
hit the return key, then try the line
feed key. Change line 140 to: 140 PRINT
A rand run again and try the return and
line feed keys. Now change line 140 back
to: 140 PRINT A,CHR%(A) : and type RUN.
Release the shift lock key and then push
various keys. Table 1 shows the value
stored in location 531 for all key
depressions with various combinations of
the shift keys. All these possible
values mean a lot of information can be
inputted with & single keystrokes.

A SIMFLE CALCULATOR

The program in listing 1 simulates
a simple caluclator and makes use of the
key detection method described above.
This calculator has normal algebraic
heirarchy i.e. it completes any pending
multiplication or division operation
before completing addition or
subtraction. This program scans the
keyboard, branches to the appropriate
subroutine when a key is pushed,
performs an operation and displays the
results.

TO RUN

1. TYPE PROGRAM IN,
BASIC PROGRAM
2. TYPE RUN
3. LEAVE THE SHIFT LOCK KEY DOWN AND DO
NOT
PUSH THE SHIFT KEYS WHILE USING
4. TO ENTER 0-9 AND DECIMAL POINT (.)
PUSH THAT KEY
S. FOR + PUSH THE +3 KEY
FOR - (MINUS) PUSH THE =-KEY
FOR X FPUSH THE X%: KEY
FOR «~ PUSH THE 7?7/ KEY
FOR = PUSH THE <, KEY
FUSH RUB OUT ONCE TO CLEAR ENTRY
PUSH RUE OUT TWICE TO CLEAR ALL
6. PUSH CTRL C TO EXIT PROGRAM

AS ANY STANDARD

In addition to the
routine, this program has
other tricks that are useful. The first
trick is that several different machine
language routines may be called from a
BASIC program with USR. To do this
simply POKE the appropriate starting
addrress in locations 11 and 12 before
calling USR. The second trick is
storing & machine language routine in
memory locations 546 to 768. This area
is not used by BASIC.

key detection
a couple of

SIMPLE CALCULATOR #wl

10 REM..SIMPLE CALCULATOR REV 02

11 REM..HOWARD G. DRAKE

12 GOSUE 100

13 POKES&832,0:REM..DELETE FOR C1F

14 L=131D=540261Y=1:27Z=0:W=0:F=116=1:R=01E=0

16 POKED+S, 48: [S$=""

18 POKE11,0:POKELR, 2531 U=USR (U) : A=PEEK (531)
20 IFA=127 THEN GOSUR 170:R=R+1:0N R BGOTO
16,14

22 R=0:B=A-43:IF B<1 GOTO 18

26 ON E GOSUE 80,50,30,70,30,30, 30,

30, 30, 30, 30, 30, 30, 30, 60, 40

28 GOTO 18

30 IF E=1 THEN IS$="";E=0:REM..BUILD NUMEER
STRING

32 IF IS$="" THEN GOSUE 170:L=1

34 1S$=15$+CHR$ (A) 1 POKE D+L,A:L=L+11RETURN
40 W=VAL (IS$) 1 Z=Z+FXYXW" B: B=13F=1:Y=11

REM. .ADDITION ROUTINE

42 I1S$="":Z$=5TR$ (Z):GOSUE 170

44 FOR L=1 TO LEN(Z%):POKE
D+L,ASC (MID® (Z%,L, 1)) :NEXT L

46 RETURN

50 W=VAL (15%) : Z=Z+FKY KW Gz B=1:F=—1:Y=11

REM. . . SUBTRACTION ROUTINE

52 I1S8%=""3:Z$=5TR$ (Z) 1 GOSUE 170

54 FOR L=1 TO LEN(Z$):POKE
D+L,ASC (MID$ (Z$,L, 1)) s NEXT L

54 RETURN

60 W=VAL (15%) 1 Y=Y KW G1 G=13REM. . MULTIFLICATION
ROUT INE

62 IS$="":Z$=8TR$ (Y): GOSUE 170

64 FOR L=1 TO LEN(Z$):POKE
D+L,ASC (MID$ (Z%,L, 1)) tNEXT L

66 RETURN

70 W=VAL(I8%) : Y=YXW" B:B=-1:REM. .DIVISION

ROUT INE

72 18$="":Z$=5TR%$ (Y): BOSUE 170

74 FOR L=1 TO LEN(Z$):POKE
D+L,ASC (MID® (Z%,L, 1)) tNEXT L

76 RETURN

80

W=VAL (IS$) s W=Z+FXYXW"G:B=1:F=1:1Y=1: Z=0:REM. .=
ROUT INE

82 IS$=STR$ (W):E=1:G0OSUE 170

84 FOR L=1 TO LEN(IS$):POKED+L,

ASC (MIDS (IS%,L,1)) tNEXT L

86 RETURN

100 RESTORE:REM. .MACHINE LANGUAGE SCREEN
CLEAR ROUTINE

110 FOR L=744 TO 767:READ M:POKE L,M:NEXT L
120 DATA
169,32,160,8,162,0,157,0,208,232, 208, 250, 238
130 DATA

240,2,136,208,244, 169,208,141,240,2,96

170 POKE 11,232:POKE 12,2:U=USR(U) : RETURN

200 REM..VARIABLE TAELE

210 REM..L-SCREEN LOCATION MARKER

220 REM..D-SCREEN LOCATION

230 REM..Y-FIRST OPERAND FOR MULTIPLICATION
AND DIVISION
240 REM..Z-FIRST
SUBTRACT ION

250 REM. .W-VALUE INPUTTED

260 REM..IS$-STRING INPUTTED BY OPERATOR
270 REM..F~FLAG FOR ADDITION OR SUBTRACTION
280 REM..G-FLAG FOR MULTIPLICATION OR
DIVISION

290 REM..R-FLAG FOR "RUE OUT"

300 REM..E-FLAG FOR =

E.STODDARD, GRAYSLAKE, ILLINOIS

How do I get my 65D-V3 to print out the
zero in the second decimal place when
I°m using it to generate price sheets?
An example is:

LIST PRICE IS5 $41.35 DISCOUNT IS 40%
COsT IS $25.10

Printer prints %28.1

OPERAND FOR ADDITION AND

Dear Mr. Stoddard:

The solution to your problem is to use
the STR$(X). It works like this. If you
assume that (A) is a number that you
want set into dollars and cents, then
use lines like these:

100 A$=8TR$ (A)

110 IFINT(A/100)=A/100THENA®=A%+", 00"
GOTO1S0

120 IFINT(A/10)=A/10THENA%=A%+"O"

150 PRINTA$

That should add the 0’s right.

BERND PENNEMANN, GERMANY

I have found some mistakes in the
AARDVARK Journal, Vol.1l, No.4, page 1%,
The listing includes "GOTO23I0" in the
lines SB0 and 660 which should be
replaced by "GOTO240".

Thanks for the adventure game article,
but the listing seems to be worthless
without a table of the commands
("G0...") and an explanation about what
can happen to you and what must be done
("find a bomb..").

Most of us know the Input-without-scroll
from the AARDVARK catalog which replaces
the GET-command used in other BASICs.
If you want to use this replacement
together with your home-brewed or
bought editor, use:

"X=PEEK (536) : POKEL1l, X1 X=PEEK (537)1
POKE12, X: X=USR (X) "

Something like "POKE11l,PEEK(536)" does
not work, because both, PEEK and POKE,
use the Vector $11,12. Therefore, the
location 11 (dec.) will be unchanged.

Some BASICs have a very good feature
which can be used in Word Frocessing
much more satisfactory than the
INPUT-statement. It is called LINE
INPUT. With this feature used, you can
input a whole line including quotation
marks and commas to a string variable.
0 course you can enter only one string
per line. The following routine
simulates this command and will not go
to the direct mode of BASIC if you press
RETURN after the "?" appears; instead,
the string will be empty.

10 POKE11,89:POKEL12, 163 PRINT"?" 1
X=USR (X) : X=19
20 IFPEEK (X) < *»OTHENA$=A%+CHRS$ (PFEEK (X)) 1
X=X+1:60T020
This routine will branch to the
input-a-line routine located in ROM at
A3S7. Then it will search through the
input-buffer, starting at $0013 and
adding up all characters in A% until a
$00, which is the end—-off-line
indicator, is found.

Dear Mr. FPennemann:

One of the pleasures in playing
Adventures is to discover what words
work. Same goes for the purpose of the
game. Discovering wht you have to do is
part of the pleasure of exploration.
Some other authors of 0SI Adventures do
include a listing of keywords but their
Adventures can often be solved in 3 to §
hours. I think that spoils the fun.

CHARLES HEPNER, STERLING HTS., MICHIGAN an
(This program is a lot of fun to play

with - and

For sometime now I have been dumping

memory in

Output from the Execution of the
program. The program prints the line
numbers of the EASIC lines in both
decimal and Hex. This program '
illustrates how basic lines with their
pointers are atored in memory.

may be even be instructive!)

various formats. One of which

is in BASICline orientation. The two
listings are for BASIC MEMORY DUMF and

10
15
20
40
S50
&0
70
80
Q0
100
110
120
130
140
130
160
170
180
190
200
210

220

REM MOD OF HEX MEM DUMF
REM EBASIC LINE DUMP
INPUT"BEG LINE#":B
INPUT"END LINE #"3E

A=PEEK (121) X256+PEEK (120) : REM BASIC IN ROM A=769

H$="0123456789ABCDEF"
LN=FEEK (A+3) X256+PEEK (A+2) 1 IFLN>*ETHENPRINT"NEXT LINE="3LNzEND
PTR=FEEK (A+1) X256+FEEK (A) 1 IFPTR=0THENEND
IFLN<BTHENA=FTR: GOTOOOO70

FRINTLN; TAB(7) 3 :D=A:L=4: GOSUBOO170: PRINT" "jil=2
N=PTR-A:REM # BYTES TO PROCESS FOR CURRENT LINE
FORZ=1TON: D=PEEK (A) : A=A+1: PRINTTARB(7) : GOSUBOO170
IFZ=20RZ=4THENPRINT" "3

IFZx2=S8THENPRINT

NEXTZ:A=A-N: REM?" 3

PRINT: A=PTR: GOTOOQO70

Cohi=""yp X=1

E=INT(D/16) : H=D—(Q%1&) : D=0z X=X+1

C$=MID% (H$,H+1, 1) +C%
IFQ»00RX<=LTHENOO 180
PRINTCS3

RETURN

SAMFLE RUN

BEG LINE#? 10
END LINE #7 220

10
18
20
40

S0

&0
70

80

Q0
100

110

120

130
140
150
160
170
180

190
200
210
220

NEXT

Ok

TI7F 9931 0A0O BE204DAF44204F44620484558204D454D2044554D5000
3199 AF31 OF00 BEZ204241534943204C494E452044554D5000
I1AF C231 1400 B422424547204C494E4523223B4200
F1C2 D631 2800 B422454E44204C494E452023223B4500
T1D6 0332 3200 41ABBR283I13I2I129AS3I23536ATREZ8313230293ABE20424153
494320494E20524F4D20413D37363900
I203 1D32 ICO0 4B24AR223031323II4TSIEI7IBIF4142434445462200
I21D 4F32 44600 4CAEABBE2841A33329A5323536A3EE2841A332293ABA4CAEAA
45A097224E455854204C494E453D223R4C4EZABOOO
IR4F 7032 S000 S0S4S52ABRE2841A33129A5I23536A3EB2841293ABAS0S452AR
J0A08O00
A270 8732 SA00 BA4C4EACA2A041ARSOS4523ABBIOIOI0I7I000
7287 AD3I2 6400 974CAEIRICI7293RIA44AR413A4CARI4TABCIOIOILII7I0OIAT7
R220223B3IA4CARIZ00
I2AD DF32 GEOO0 4EARS0OS452A4413ABE202320425954455320544F 2050524F 43
45535320464F522043555252454E54204C494E4500
Z2DF 0333 7800 B15AAB3I19DAEIA44AREER2B41293A41ABA1IA3ILIIAF79CI7293A
8CIOI0OI1I373000
3303 1633 B200 BASAAEBI2A9SAAEI4A0F72220223B0O0
3316 2433 8COO BASAASI2ABITIBA0F700
3324 I7IZ 9600 BRSATA41AB41A44EIABEIF22203RB0O0
IZT7 4A3I A000 97IA41ABS0S4523ABBI0IOIOI7I000
334A S833 AAQD 4324AR2222IAGBARILI00
II58 7B33I B4OO S1ABAER844A63136293A48AB44A42851ASI1I36293A44ART1IA
S58ARSEBAIIL00
IIZ7E 9133 BREOO 4324ABC3I2B4B242C4BA3312C3129AT432400
3391 AS3IZ CBOO BAS1AAIOAYSBACABACAO3I0I031383000
3I3AS AE3IT D200 974324TROO
33AE B433 DCOO 8DOO
LINE= 17021

CHANGING THE ’OK® PROMPT
BY GREG WILDER

Are you BASIC IN ROM users tired of
seeing the famous "OK’ prompt after all
immediate mode commands. If so, run
this program first. (It will erase and-
leave a machine code program behind.)

The routine will accept any word, name
or punctuation mark as & prompt. Now
you can have "READY’, *C1iP ON-LINE’, or
even an "%’ as a prompt. The routine
resides in the highest available RAM and
uses 25 bytes of memory plus the length
of the prompt.
ALTER PROMPT ROUTINE

10 INPUT"ENTER PROMPT"jPR$1L=LEN(PR%)

20 POKEZ, 761POKE4, 2401 POKES, 28

30 FORX=7408T0O74231READA: POKEX, A1 NEXT

35

POKE134, (PEEK (134) 1) 1POKE133, 256-25~-L

40 BA=7402-L)1FORY=1TOLEN (PR®) 1 POKEBA+Y
ASC(MID® (PR%,Y, 1)) 1NEXT

S50

FORX=BATOBA-ISTEP-11 READA1I POKEX, A1 NEXT

55 POKE7403, 131 POKE7404, 101 POKE7405, 131
POKE7406, 10: POKE7407,0

60 DATAL162,0,189,224,28,240,6,32

70 DATA238, 255,232,208,245,76,201, 168

75 DATA10,13,10,13

80 POKE7411,231-L1NEW

MARK BGUZDIAL, ROYAL OAK, MICHIGAN
Congratulations on your Compiler. I
think it’'s great news, but what is the
minimum system configuration? In other
words, I want one badly, but will it run
on my 8K cassette-based C1P?
First, in Bob Retelle’'s article on
memory saving in the Oct. B0’ issue (I
know thats a long time ago) he mentions
207 bytes he found for UBR use from
$0130 to $01FF. Because the 6502 stack
pointer is one byte long with a ninth
bit added which is permanently one, all
of page one is 6502 stack space. Since
the stack builds down, and Basic
initializes it to $01FE, lower addresses
in the $01XX section of memory may be
safe, but you always run the risk of the
6502 overwriting your memory if
subroutines go too deep, or Basic uses
RPN on an extensive computation, or any
other extensive use of the stack.
Secondly, you might mention that
the programs presented by Charles A.
Stewart in the last issue of the Journal
are very efficient memory relocators,
they are not program relocators. Nowhere
does he try to reconcile jumps, jump to
subroutine, or branches in the memory
moving, ®so the programs he moves
(assuming machine language programs)
will probably not run at the new
address unless they’ve been designed for
relocatibility.

Dear Mr. Guzdial:

Yes. The Compiler will run in 8K, but
it takes S.7K leaving only 2+K for both
source and object code—about enocugh for
a USR(X) routine.

MODIFICATION FOR LETTER WRITER
BY STANLEY HARSHFIELD

Thie modification enables the use
of the upper/lower case 0SI character
generator, without messing around with
the 8hift Lock key. In the upper/lower
mode, it converts the keyboard to a
standard typewriter keyboard, using
either the Right or Left shift keys for
cCaps. For capitals O and N, use the
left shift only, as one would normally.
When the Right shift is used with these
two keys, the backspace and up arrow
functions are enabled.

There are two versions.
Unfortunately, due to the special DOS
software, its version is somewhat
different.

Incidentally, note the corrected
PEEK values in both versions from those
given in BATTLEFLEET.

Alternately, Lines 90-105 could be
accessed as a subroutine, located at the
beginning of the program, to allow all
string inputs throughout to be
upper/lower case.

UPPER/LOWER KEYBOARD ENTRY

64 REM CiP ROM VERSION

65 POKE11,01POKEL12,253

b6 PRINT"IS THIS TO BE:"1PRINT:1PRINT"
1 >UPPER CASE ONLY"

&7 PRINT" 2>UPPER/LOWER
CASE"1PRINT:PRINT INPUTTO

90 As=""3;PRINT"COMMAND: "1 ONTOBOTO103
91 X=UBR(X)1P=PEEK (531)

92 IFP=13THEN102

93 E=PEEK(57088)1 IFQ=252ANDP=%4THEN101
94 IFQ=252ANDP=95THENS8

95 IFQ=2500RQ=2T2THENY?

96 IFP>&4ANDP<91THENP=P+32

97 GOTO100

9?8 PRINTCHR® (95) j1As=MID® (A%, 1,
LEN(A$)-1):60T0O91

99 IFP>B0ANDP<107THENP=P-16

100 IFP=64THENP=80

101 PRINTCHRS® (P) 3 1 A%=A%+CHR% (P) 1 GOTO?1
102 PRINT:GOTD10S

103 INPUTAS

104 IFLEN(AS)<1THENAS (L)=As:L=L+11
G0TO90

105 IFABC(A%)=94THEN120

64 REM CiP-MF VERSION

65 POKEB955,43: POKEBYSS, 37

&b PRINT"IS THIS TO BE:"1PRINTIPRINT"
1 >UPPER CASE ONLY"

&7 PRINT" 2>UPPER/LOWER
CASE"1PRINT: INPUTTO

0 As=""3 PRINT: PRINT"COMMAND: "1
ONTOGOTO103

91 X=USR(X):P=PEEK (9504)

92 IFP=13THEN102

93 IFP=7&6THENS7

94 @=PEEK(57088)1 IFQ=252ANDP=94THEN101
95 IFE=2S500RA=2520RA=25S0RA=218THEN??
946 IFE=220ANDP=9STHENPRINTCHR®$(8) j1
As=MID$ (A%, 1,LEN(AS)-1) :60TOF1

97 IFP>64ANDP<91THENP=P+32

%8 GOTO100 .

99 IFP>BOANDP<107THENP=P-16&

100 IFP=64THENP=80

101 PRINTCHR® (P) 3 1 At=A%+CHRS (P) 1 GOTO?1
102 PRINT:60TO105

103 INPUTAS

104 IFLEN(A®)<1THENAS (L)=A%:sL=L+11
GOTO90

105 IFABC (A%)=94THEN120

REVISION FOR SINGLE STEP TRACE PROGRAM

SINGLE STEP TRACE AND LISTER PROGRAM
BY TODD BAILEY

The BASIC TRACE program in the CI1E
Monitor ROM handbook gave me an idea for
a Single Step Trace and Lister program.
This program intercepts the call to the
"CTRL C" check as in the handbook’s
program. But I have added a call to the
get key subroutine so that the program
will wait ¢till a key is pressed before
executing the next instruction. A flag
was added at dec.220 for no trace, full
time trace, or 8ingle Step Trace. The
program also checks for which key was
pressed in the Single Step mode. A "CTRL
A" will execute one step with no line
number display. A "CTRL 8" will execute
a step and display its line number (CTRL
and just about any other key pressed
will do this also). The "CTRL C" works
as before. By pressing and holding
"CTRL A" or "CTRL 8" vyou can step
through your program as long as you hold
the keys down. Releasing the keys will
stop program execution.

The "CTRL A" function in the Single
Step mode can also be used to control
listing. Type in "LIST" and hold down
the press it again to continue your
listing.

The program itself can be relocated
anywhere in memory. However, setting up
the vector to the program can be a job!
To set the vectors with POKES, you must
either position the program so that you
can change the vector with a single
POKE, or place a RTS at the location to
which the vectors will be pointing
between your two POKEs. Otherwise your
first POKE statement will be executed,
the computer will jump to wherever the
vector then points for a "CTRL C" check
and will jump to garbage and never get
to your second POKE statement. Another
way around this would be to use a USR
call to jump to & short machine code
program to set up both vectors at once.

Listing one and two are the
Assembler listing of the program for the
08I ROM and CIE ROM. Listing three and
four are Basic POKE programs. Again,
one for 0SI’s ROM and one for the CI1E.

Another neat thing that I have
found to use the Cl1E ROM for is in run
running BASIC with the Assembler/Editor.
You can load in the Assembler and use
the block move command to move it up to
the top of memory. When you cold start
in Basic set the memory size below where
you stashed the Assembler. Then, if you
want to use the Assembler later, use the
Block move again to put it back where it
belongs and go from there. One of these
days I am going to relocate the
Assembler so that I don’t have to play
these games''

I changed the jump to print the
line number from ®B953 to $B95A to
bypass the printing of "IN LINE" before
each line number. It looks nicer this
way.

LISTING #1
10 0000 jSUPER TRACE FOR 0SI
MONITOR
20 0000 ;s CHECK TRACE FLAG

30 0000 ASDC LDA $DC BGET FLAG

40 0002 C901 CMP #%01 ;COMPARE TO
ONE

50 0004 FOOB BE@ PRLN jFULL TRACE

&0 0006 900C BCC END jNO TRACE

70 0008 1 TRACE ROUTINE

80 0008 2000FD JBR $FDOO jGET KEY

20 OQOOB C?03 CMP #%03 I8 IT A C

?
100 Q00D FOOS BEQ@ END jNORMAL CTRL
c
110 O0OF 2003 BCC END I8 IT AN A
?

120 0011 205AB? PRLN JSR #B95A jDISFLAY
LINE NUMBER

130 0014 4CSBFF END JMP #FF9B JEXIT TO
CTRL C

LISTING #2

10 0000 1 BUPER TRACE FOR CIE

20 0000 JCHECK TRACE FLAG

30 0000 ASDC LDA #DC 1GET FLAG

40 0002 C901 CMP #801 COMPARE TO
ONE

50 0004 FOOB BE® PRLN pFULL
TRACE

&0 0006 F00C BCC END INO TRACE

70 0008 1} TRACE ROUTINE

80 0008 2000FD JBR #FDOO JBGET KEY

0 O00B C903 BCC END 1I8 ITAC
?

100 000D FOOS BEQ@ END) NORMAL
CTRL C

110 O00F 9003 BCC END 118 IT AN A
?

120 0011 20SAB9 PRLN JSR $B95A jDISPLAY
LINE NUMBER

130 0014 4C94FB END JMP $FB94 JEXIT TO
CTRL C

LISTING #3

10 REM-SUPER TRACE & LISTER FOR 08I
MONITOR ROM

20 REM-POKE220,0 FOR NORMAL OPERATION
30 REM-POKE220,1 FOR FULL TIME TRACE
40 REM-POKE220,2 FOR SINGLE STEP TRACE
50 REM-IN S8 MODE CTRL A EXC ONE STEP
AT A TIME/NO LINE DISPLAY

60 REM-AND CTRL S EXC ONE STEP AND
DISPLAYS THE LINE NUMBER

70 REM-CTRL A MAY ALSO BE USED IN A
LISTER FUNCTION,JUST TYPE IN LIST

80 REM-AND PRESS AND HOLD CTRL A TO
LIST AS MANY LINES AS YOU WANT-

90 REM-RELEASE CTRL A TO STOP THE
LISTING, AND PRESS IT ABAIN TO-

100 REM-RESTART YOU LISTING-

110 FORA= 647 TO &89 1READ Bi
POKEA, BINEXTA :

120 POKE220,01 POKES41,2

130 DATA1&5,220,201,1,240,11,144,
12,32,0,253,201,3

140 DATA240,5,144,3,32,90, 185,

76,155, 255

LISTING #4

10 REM-SUPER TRACE & LISTER FOR CIE
MONITOR ROM

20 REM-POKE220,0 FOR NORMAL OPERATION
%0 REM-POKE220,1 FOR FULL TIME TRACE

40 REM-POKE220,2 FOR SINGLE STEP TRACE
50 REM-IN 88 MODE CTRL A EXC ONE STEP
AT A TIME/NO LINE DISPLAY

&0 REM-AND CTRL S EXC ONE STEP AND
DISPLAYS THE LINE NUMBER

70 REM-CTRL A MAY ALSO BE USED IN A
LISTER FUNCTION,JUST TYPE IN LIST

80 REM-AND PRESS AND HOLD CTRL A TO
LIST AB MANY LINES A8 YOU WANT-

90 REM-RELEASE CTRL A TO STOP THE
LISTING, AND PRESS IT ABAIN TO-

100 REM-RESTART YOUR LISTING-

110 FORAm&L0 TO 682 1READ

B1POKEA, BINEXTA

120 POKE220,0 1POKES41,2

130 DATA145,220,201,1,240,11,144,
12,32,0,253,201,3

140 DATA240,5,144,3,32,90,185,76,

148, 251

CORRECTION , JAMES SCHAFER, IOWA

The hardware mod, "Making VYour Disk
Quiet" by Dave Pompea, found in last

month’'s Journal, needs a touch up before ¢ZIN

it will work.

i. Pins 6 and 7 of the 74123 are
reversed.

(R) should be pin 7 and (C) should
be pin &.

2. The (motor on) signal willnot reach
the disk

until you install a jumper across
thae two

pads in position 4 of the disk
interface

connector board.
Thanks to Dave’'s mod, my disk can be on
for long periods of time without

unnecessary wear on my diskettes and
drive.

CRAIG LINDBLAD, MESA, ARIZONA

1 have been disappointed at how little
has been written about PICO DOS. I am
still maving up to buy the 0865D
operating system but feel that PICO DOS
has use for the programmer such as quick
loading of files which you use often.
(checkbook balancing, games, etc.) I
have discoveraed after PEEKing and
POKEing around, how to get back into
PICO DOS after hitting the BREAK key and
warm starting. The following POKE®s will
do its

PDKE542,153IPOKES43,37IPOKE544,1641
POKES4%5, 37.

You can now use your BSAVE and LOAD
commands as before. Come on you PICO
DOS users - let’s come up with s=some
documentation. P.S. Start by POKEing the
first value only to test for an error
message. It will save time having to do
it all over again.

Dear Mr. Lindblad:

Did vyou know that PICO DOE will store
machine code? Assemble the code below
8K, boot up the PICO DOS and "SAVE". To
make it self starting, POKE the start
vector (HH,LL) into locations 01 and 02.
P.8. Dave Edson figured out how to do
it.

THOMAE OWEN, MIAMI FLORIDA

When conversion has been made to 2MHZ
system operation (C1P) you will
encounter errors when trying to write to
a disk because the transmit clock has
doubled from 125KHZ to 250KHZ. Leave
system at 2MHZ and add the flip-flop to
divide it back down. All disk
operations will work fine after this mod
has been made. I know a lot of people
who have doubled their speed on a Cl and
after adding disk could not understand
why it wouldn’t work at 2MHZ.

S
o ol
#%
o~
=5
ui2 FF l"“
£3 >
7493 P 25¢ KHZ IN ln 7474 25 KHZ oST|
/
g > o2 bomy b | o CIR
0| FloppPY
—0\7

Fer CJP()RquPEERE£NHQC>=

RANDOM ACCESS FILES
BY DICK SNELL

I had an application where I needed
to use large random access files (I
needed thirty-nine tracks worth), but
the DOS +Ffor my CA4P-MF (with 24K) was
inadequate. It had the following
drawbacks. First, the CREATE program
wouldn’t let me start a file below track
12 (I wanted to use a data-only disk and
start on track one). Second, the DOS
limits you to record lengths of powers
of two (B8,16,32,64,etc.) and I never
could get the different record lengths
to work consistently. I wanted to use
record lengths of 27 bytes (plus one
byte for the carriage return at the end
of every record written to the buffer).
Third, the DOS is too slow. It rereads
a track into the buffer even though that
track is already in the buffer.

The following system overcomes all
of these drawbacks. It might look
complicated at first, but it is powerful
and worth using, especially if you need

record lengths other than powers of
two.

First, let's look at the
housekeeping that has to be set up in
the early part of the main program.
Don"t forget to put a buffer in front of
your program (use the CHANGE program).

110 RL=281B1=129261NRPT=INT (2048/RL) 1
NBUPT=RLXNRPT

112 HC=2%561FT=20

114 Se="CA I27E="+RIGHTS (STR$ (100+FT)
,2)+", 1" DISK!S$

116 CT=FTsNT=FT

In line 110, RL is the Record
Length in bytes (plus one byte for the
carriage return symbol). In this
example, RL is set to 28 since I wanted
records 27 bytes long. Bl is the first
memory location for buffer #1
(12926=%327E). NRPT is the Number of
Records Per Tracky it is equal to the
number of bytes per track (2048) divided
by the record length in bytes. NBUPT is
the Number of Bytes Used Per Tracky it
is equal to the record length in bytes
multiplied by the number of records per
track. For this example, NRPT=73 and
NBUPT=2044, which means we "waste" four
bytes for each track. As you experiment
with other record lengths, vyou'll see
that the number of "wasted" bytes per
track varies quite a bit.

In line 112, HC is a constant used
later in hexadecimal conversions. FT is
the First Track in the file) for this
example I am using track 20 as the first
track.

Line 114 brings the first track of
the file into the buffer. This is
equivalent to the DISK OPEN command.
Line 1146 sets CT and NT equal to the
first track. CT is the Current Track in
the buffer. NT is the New Track which is
to be brought into the buffer.

Next let’'s look at the subroutine
which actually does the track and memory
pointer manipulations. This subroutine
is equivalent to the DISK GET command.

10 NT=FT+INT(RN/NRPT) s IFCT=NTTHEN1é&
12 S#="8A"+RIGHTH (STR$ (100+CT) ,2)
+", 1=327E/8"1DISK ! 8$1 CT=NT

14 S8$="CA I27E="+RIGHT# (BTRS (100+NT)
$2)+",1"1DIBK!E%

16 Qi=Bi+(RLXRN-NBUPTXINT (RN/NRPT)) s
@2=INT (Q1/HC)

18 POKE9133,02:POKE?1546,02:POKE?132,
G1-HCx@2: POKE?155, @1 -HCxQ2: RETURN

Line 10 calculates the new track
required to be brought into the buffer.
RN is the record number you wish to
access. For example, if you want to
examine the 244th record in your file,
set RN=244 in the calling program. If
the new track is the same as the track
which is currently in the buffer (CT),
then the track saving and calling steps
(lines 12 and 14) are skipped.

If the correct track is not already
in the buffer, then line 12 saves the
information currently in the buffer to

the appropriate track and updates the
value for CT. Similarly, line 14 calls
the appropriate track into the buffer.

Lines 16 and 18 calculate the
necessary parameters and set the buffer
#1 input and output pointers to the
appropriate values.

There is one more step before we
can use the system, preparing a data
disk. The call statement in line 14
will give a #9 error unless something is
already written on the track. In other
words, an initialized track won’t work!
I use the following program to fill my
data disk (all 39 tracks) with zeros and
carriage return symbols.

1000 POKE9156,501POKES155, 126

1010 FORI=0TO10241PRINT#&, "O"INEXTI

1020 FORI=1TO3X9

1030 S#="8A"+RIGHTS (STRS (100+1),2)+
", 1=327E/8"1DISK ! 8%

1040 NEXTI:END

Once you have a data disk prepared,
using the system is straightforward.
All you need to do in your main program
is to set RN equal to the record numbar
you wish to access, and then GOSUB 10.
The subroutine will bring the
appropriate track into the buffer and
set the buffer input and output pointers
to the correct values. As an example,
add the following statements to the
above.

1 GOTO110

130 X#="THIS IS RECORD NUMBER"
140 FORI=0TO145%9:RN=11G08SUB10
150 PRINTH#&, X$+8TR® (I) sNEXTI
160 GOSUB12:END

When you have this program ready,
put a prepared data disk into your disk
drive and run the program. The program
will put the record number message (0
through 1459) into the appropriate
locations on the different tracks. You
can =see the results by calling the
various tracks into D200. The GOSUB 12
statement in line 160 is the equivalent
of a DISK CLOSBE statement. It should
always be your last operation when you
finish working with the files, otherwise
you will lose the information most
recently written into the buffer.

I use this system extensively for
handling random access files with
various record lengths, and it works
beautifully. I hope it will be just as
helpful in your applications.

SPEEDING UP DISK DIRECT FILES
Written for C8BP-DF, C4 in ()

One of the nice features of 0SI
BASIC is that it supports DIRECT or
RANDOM ACCESS files. However, the use
of these files are time consumming,
annyoying, and wasteful due to the
manner in which the system handles them.

The system treats a direct file as a
collection of records. The records of
any one file are all the same length and
the length may be any power of 2 up to
256 bytes long (e.g.
2,4,8,16,32,64,128,256) (ref. Aardvark
Journal #2 and correction Aardvark
Journal #4). In applications where data
is not accessed sequentially but
accessed based on a decision, the direct
file is essential.

A look at sequential files will
help point out the advantages of direct
filas for certain applications. A
sequential file could be used in the
following manner to read '"record" N.

LISTING #1
900 DISK OPEN,&,FILES
910 FORI=1TON: INPUTR®1NEXT
920 DISK CLOSE,&1RETURN
This method requires that the file
be read from the beginning every time
any element is read; it may be sped up
by adding some controls.

LISTING #2
10 DISK OPEN,&,FILES

900 IFN>LAST THEN FIRST=LAST+1:1G0T0O920
910 DISK CLOSE,&:1DISK

OPEN, &6,FILES1FIRST=1

920 FORI=FIRST TO NiINPUT R$:NEXT

999 DISK CLOSE,&1END

The addition above allows the
program to continue reading from the
last required "record" if the new
"racord" is beyond it in the file.
However, the one feature of direct file
records which I have ignored until now
is that direct file records may have
more than one output in them where the
sequential file which is masquerading as
a direct file, has one string or
variable as its’ "record".

I1f, for instance, you wanted to
store a mailing list, everyone uses
mailing lists as examples don’'t they, it
would be easier to output the name,
address, city, state, and zip to a
record in a direct file as opposed to
storing the data in a sequential file.
Why it is easier is another topic. To
do this in a direct file is as follows:

LISTING#3
10 DISK OPEN,&,FILES

iOO B0O8UBR00:REM WRITE RECORD

500 B0OSUBYS01REM READ RECORD

900 DISK GET &,RECORD

910 PRINT#6,NAME®:1 PRINT#S, ADDRESSS:
PRINT#&6,CITYS

920 PRINT#4,STATE®1PRINT#SE, ZIPS
930 DISK PUT &1RETURN

950 DISK GET &,RECORD

960 INPUT#S&,NAME®, ADDRESSS,CITYS,
STATE®, ZIP%

970 DISK PUT &6:RETURN

999 DISK CLOSE,&1END

This brings us to
consuming and

the time
annoying part of 08I
direct files which is that everytime a
record is accessed the system reads in
the disk track which contains the record
and if the operation is a PRINT the
system writes out the track to disk when
finished. These computers are supposed
to be smarty why can’t the silly thing
figure out 1if the disk track containing
the new record is already in the disk
buffer because the old record was on the
same track. There are two ways in which
the system is inefficient in direct file
storage; the first is the use of only 12
pages/track instead of 13 and the second
is the fact that each PRINT statement
generates a carriage return ($0D) and a
line feed ($0A) when only the carriage
return is used by the INPUT statement
and the line feed is ignored. In the
mailing list example there are 5 bytes
in each record taken up with line
feeds.

Now that we know the problem, what
can be done about it? Since the
computer jsg faster than the disk drive,
it seems ¢to me like a good trade to
expend a few more RAM bytes in the
program and save a few disk bytes in

every record. In order to do this
several utility subroutines need to be
developed. I prefer to put these in

subroutines in order to provide
transportability from program to
program.

FUNCTION 1: OPEN FILE

The first thing we need to do is
locate the file on the disk and create a
buffer area at the top of memory. The
track is located by reading the
directory from track 8(12).

VARIABLES
R - Record being requested A% -
Temporary
RL = Record length I -
Temporary
RT - Records/track J -
Temporary
TF - First track FILE® - File
name
TK - Present track W = Write
flag

Z% - Carriage return

LISTING #4

10 POKE132,2551POKEL133,1771CLEAR
20 INPUT"FILE"jFILES$:1RL=64:B08SUBF010

LISTING #5

7000 REM READ DIRECTORY & INITIALIZE
F010 TK=1:RT=INT (3328/RL) : Z$=8CHR$ (13)
020 IF LEN(FILE®)<é THEN
FILE$=FILE®+""1680T09020

F030 DISK!"CA BFO0=08, 1:60SUB?100
9040 IF TK<>OTHEN RETURN

9050 DISK!"CA BF00=08,2:B0SUERF100
7060 IF TK<>OTHEN RETURN

2070 PRINT F#;"NOT FOUND":1END

9100 Ag=""

9110 FORI=48896T049151STEPS) IFPEEK (1) =
3560TO09150

9120 FORJ=ITOI+5:A$=A%+CHRS (PEEK (J))
NEXTJ

F130 IFASC>FILESTHENAS="";E0TO9150
P140 I=PEEK(I+&)1TK=I-6KINT(I/16)1
RETURN

9150 NEXTItRETURN

Now we know the first track of the
file. Change the POKE at 133 for
systems with less than 48K memory. The
CLEAR will reinitialize BASIC’s
pointers.

FUNCTION 2: WRITE RECORD

Both the writing and reading of
records uses device #5, memory I1/0. In
order to write an entire record, execute
an

LISTING #&

9200 REM WRITE RECORD

9210 I=TF+INT (R/RT)1 IF I=TKGOTO9240
9220 IFW=1THENBOSUBS840

9230 TK=I)BOSUBSE10

9240 GOSUB99&0

9250 PRINT#S,AjZ%;B%;Z%;

9260 W=11PRINT#91RETURN

9800 REM CALL DISK TRACK

9810 POKES098, 1281 POKEF09%9, 1781
POKES10%, 1281 POKEF106, 178

9820 PRINT#S,"DISK!"; CHR$(34);"CA
B300="y RIGHT® (STRS(TK),2)j",1"

9830 PRINT#S, "G0TO9840":1DISK!"I0

10, 101 END

9840 POKE910%,01DISK!"I0 02,021 RETURN
9850 REM SAVE DISK TRACK

9860 POKEF098, 1281 POKEF099, 1781
POKE910%, 1281 POKES106, 178

9870 PRINT#S,"DISK!"jCHRS (34)"SA"}
8TR$ (TK) 3 ", 1=B300/D"

9880 PRINT#S, "G0T09890"1DISK! "I0

10, 103 END

9890 POKE910%,01DISK!"I0 02,021 RETURN

9950 REM SBET DEVICE #5 OUTPUT

9960 X=m(R=(TK~TF) ¥RT) XRL1 Y=INT (X/256&)
9970 POKEF105, X-(YX256) 1 POKE?106, 179+Y:
RETURN

This code checks to determine if
the track in the buffer is the same one
being call for. If it is, no disk
transfers occur. If it is not, then the
WRITE FLAG is tested; if the buffer is
called. Line 9250 may be any set of
PRINT statements, however, each user
variable should be followed by a ZI%
(carriage return) and the semicolon used
to pack the output. The PRINTH#9 ends
the PRINT statements and dumps a
carriage return/line feed to a null
device.

FUNCTION 3: READ RECORD

The method in which a record is
read is similar to a write. To read an
entire record, execute a:

LISTING #7

9300 REM READ RECORD

9310 I=TF+INT(R/RT) IFI=TKGEOTO?340
9320 IFW=1THENGOSUBY840: W=0

P3I30 TK=I:B0SUBF810

9340 GOSUB9910

9350 INPUT#S,A,B%

9360 RETURN

9900 REMBET DEVICE #5 INPUT

F910 X=(R=(TK~=TF) XRT) XRL1Y=INT (X/256)
F920 POKER0O98, X-Y%2541 POKEFOF9, 179+Y)
RETURN

As in the write routine, the code
checks to determine if the track in the
buffer is the same one being called for.

If it is not, then the WRITE FLAG is
tested. If the buffer is dirty, then

the old track is written and the WRITE
FLAG is reset before the new track is
called. Line 9350 may be any set of

input statements but these inputs should
exactly match the outputs on line 9250.

FUNCTION 4

At the end of the program, this
function must be called to insure that
all the data which was written is indeed
placed on the disk. To call, execute ai

BOSUB9410

LISTING #8

9400 REM CLOSE FILE
9410 IF 2=0 THEN RETURN
9420 GOSUBYB&01RETURN

This code checks the WRITE FLAG and
saves the buffer to disk if the flag is
set.

Listings 5-8 are written to be put
together as a package and were listed
separately for clarity in explanation.
Listing #4 is user dependent but all of
the functions must be performed. Like
all things in the real world there are
advantages and disadvantages. I believe
the advantages win in this case.

The disadvantages are: First, the basic program. It will poke the code in

records may be over written past their and then clear the screen to reset the
defined length and garbage up the cursor to the top of the screen.
beginning of the next record. Although,

I never tested 0SI BASIC to determine if To change scroll windows or scraen
and how it protects you from this. A width, poke the change to the save area,
page of memory Jjust below the disk not to $200-$232. The save area starts
buffer is dedicated to pass to DOS the at $2SEF (9699).

CALL and SAVE commands. Lastly, the
subroutines take up program space.

10 3 ClE DOS patch by Dave Fompea 9/81
The advantages are: First the disk =) ¥

file space is 8.5%Z more efficient since ey : For Aardvrk Journal
there are 13 pages instead of 12 on a 40 DEHS % = $2599
track and additional bytes are picked up 50 -
by not putting linefeeds in the records. LO 2EQ IME QUTFUT
The program track storage is less 70 D590 LDX #$372
because OSI BASIC stores the disk buffer a0 PE9E LDA $200, X
along with the program on tha disk. The 90 2581 LDY S.AREA, X
average read/write time of a record is 100 2504 : STA S.AREA, X
much lower since these subroutines run 110 2E5A7 98 TYA
much faster than disk I/0. These 120 2EA8 9DOOOR STA $200,X
routines will work for any record length 170 25AR CA DEX
within the physical capabilities of the 140 25AC 10OF0 EFL SWAF1
disk. Lastly vyou don’t have to sit 150 2508E ASFE LDA $FE
there and hear the ?!$%% being pounded 160 25E0 ACLL2G LDY FO.FE
out of vyour disks and drive by the 170 PSREE AD1626 aTaA FO.FE
PUT/GET routines. In closing, consider 180 25R& BAFE aTyY $FE
initializing a track of 44 byte records. 190 25R8 ASFF LDA $FF

The PUT/BGET routines would go to the 200 2HRA ACLI726 LDY FO.FF
disk no less than 94 times wherae the 2ERD 8D1726 aTa FOLFF
subroutines listed go to the disk only 2 2500 B4FF aTY $FF

times.

28C2 60 RTS
L 200DRS 8W. IN JBR $250D
NOTE: To change the subroutines for 409005 JIMF SWAF
 systems smaller than 48K use the 209025 SW.0UT JSR SWAF
following. » ACODRS JMF 250D
48 QUTFUT FHA
OFFSET = 4% (48-MEMSIZE) 20C325 JER SW. IN
POKE’S to 133 = LISTED VALUE - OFFBET T 68 FLA
POKE’S to 9099 & 9106 = LISTED VALUE - L 48 FHA
OFFSET Cceos CMF #8
"BI" in lines 9820 & 9870 = $BI - DOOE ENE OUT1
OFFSET ARSF L.DA #H5F
= v 20Z6F8 0OUTH JBR $FB36
USING THE CIE ROM WITH 08&5D R GER=ER=OUT
BY DAVE POMPEA 68 PLA
(=18 QUT.RT RTS
When I plugged my new CIE ROM into my 390 25EZ 10 5.AREA .BYTE $10,%$20,$31,0,0,0,0,%A9
CiP/MF system and tried out the new I90 25E4 20
features I was astounded by all the 390 25ES 31
stuff that they had put in it. However, 390 25E6 QO
the editor and screen window were not =90 Z5E7 0O

usable with 086SD. A short note in the 390 Z5E8 00
manual said that a patch would be made IR0 25E9 00

available soon, but that was six months 3?9 2CEA A9
ago. I grew impatient and wrote my own. 400 25EE 88 ~BYTE $88,%B3,$09,%01,$39, $ED, $04, $59
The main problem is that the C1E ROM 400 25EC BI
uses memory from $200 to %232 and 0865D 400 ZSED 09
BASIC also uses that area for the 400 S?EE ot
interpreter. BASIC would bomb if the 400 ZSEF 39
new editor or screen driver were used. 400 25F0 ED
The solution is to swap this area of 400 25F1 04

memory with a save area depending on
which routine (BASIC or CIlE ROM) was
being executed. A nice place for the
save area and the program to do the
swapping is the space used by the DOS
screen driver ($2599 & up) since we
don’t need it anymore. The other change
needed is that the C1E rom doesn’t

recognize a backspace code (#08), so we
changed it to delete code (#5F) which it il ke
can do. To use the patch, just run the 420 2OFC FR

.BYTE $8F,%1E,$00,$31,$464,$31,$31,$32

LEYTE %46,%FB,$9E,$FF,$94,$FR, $70, $FE

CBYTE 20,485, DO

480 2617 00

490 3
500 2 ¥
510 3 C329

520 ¥
50 2 e

540 1 *

S50

20486FE

SEPARATE THAT DISK DRIVE
CHARLES MAGUIRE III

(We have had a lot of questions about
putting non-08I drives on 0SI systems -
here’s how to do it.)

It was way back at the beginning of
January that I started the long and
cheap way of upgrading my C2-4P. I got
everything working the end of June!

I learned quite a few shortcuts 08I
uses. The biggest one was the paddle
board they use to crosswire the ribbon
cabley I didn’t know they were available
80 I cross jumpered the 34 pin ribbon
cable to the 24 pine connector BY HAND
(time consuming?).

Now down to the
bought an MPI

disk drive. I
BS1 from my dealer for
about %280 (including case and power
supply). Plugged it in and it didn’'t
work with the FL-470 (D & N) board and
the monitor ROM mod--then I started to
leaarn what a Data separater is and how
you go about making it work.

I told my dealer to get me a data
separater. He got it from MPI directly
and sold it to me for #%40. I plugged it
in and still nothing worked. Then I
borrowed an OSI drive, plugged it in and
a few seconds later I was looking at the
BEXECX program of 0865D. That narrowed
my problems to the disk drive.

From there I spent about 35 hours
looking and comparing the 0SI drive with
my drive (sound easy?-drives were
different assemblies but still both were

LEBYTE $7E,$FE, $17, $85, $D0, $85, $DT, $ED

LEBYTE #85,$D0, 39D, 85, $D2, $CA, $60, $00

BS51’'s). The first thing found was a
small cut in one of the traces -- it
looked like a spec of dust! This cut was
the side select line from pin 32. It is
located underneath Ji1 (34 pin edge
connector-see diagrams) on the solder
side of the main PC board.

That was easy to find but the drive
still didn’t work. S8ince the drives
were of different assemblies I could not
compare them one for one.

From there I started comparing
signals with a scope. [started looking
at the board again when I found some
differences. And there it was-—another
foil cut. This one was very neatly done
and hidden on the component side of the
board--underneath the edge of the chip.
This is where you might have to do some
trace searching. On my drive the traces
in this area were slightly different. I
had to make the cut on the back side of
the board. But wherever you make the
cuts, be sure to check the schematics so
you get the right ones at the right
place.

As so0on as I made these cuts to my
drive, I plugged it in and everything
worked. I have used it for several
weeks now and have had no data loss.

If you have any questions or
problems please call (717) 8%54-5830.

12

e :
B N TR (s S
o o, y H
el h_ |
ba -]
L O i
[b !
[l P
|
-mITL o
8
L e pct |
1y ‘ 1 ' o N L TR TAL R g
" Bata Ii ;
I l & [
i { " La ?Jii : —] [— —— —]
= T PR B T =i | = : i I
.|-1 A bt "‘ N T me
B s y i = = = ar - EET= = A
3 COLS AN Ix wiChaC@Il) o T * = — T B e Ssi7sE VoK
1. CAPACITAMCE YA UL AN [N wICAY LADS - -
G MEEIRTANCT VALLET WAL [el A COMPONINTS WNT=OUT VALULS ARL “OT USLD = “. _. 2 o e 6[‘“"“ [._: :OGOOZ'OG'I‘.;\
MTUL! IR OTARY M U IS T emdine TR TN IO R S LI 0 |
PRI I 7 T 6] 5 t a T 3 2 I 1
JA - CA3054 1G = SHUNT 2E - 74LS74 30 - JLLSIL LF - LM339 56 - 75478 6Ga - 75478
1C - LM311 2A - CA3054 2F = 7LLS14 3E - 7438 LG - 22K DIP 6A - 75463 6Gb - 75478
1E - 74LS123 2B - NES592 26 - 7438 3G = 74LSIL S5A - 7L4LS139 6C - 74LS33
|F - TERM 2D - 7h4LS86 3C - 74LS169 Lc - 74LS10 6B - 74LS123 6E - 74LS123

) 2
P

4oz

|
— |
TassrMALT %0.3-29003- s— - T i
P~ = an |
b e 4 an P ﬁ;
Al — EILY { i
o S o s o) IR | |
G ELE = s |
6 7
qa 3% _ {221 l
Lk { = | § I—ms
= I —
= =
[F] G
— e {
s | S vy .‘: = e ! 9 ¢
>3 =
R k= J—
A
o L | ‘ |
c;-.v — : aygD |
30
P 9d = —
7 . c28 £2% ' L“J f
T =f 2=
asy — —
—
e [({ [i D o | |
a« | ke e o '
S O s e Sy
o |
T L e e
Tour 6as 804
130 &g 3
¢ e
L] LLs3 a7 '_kl 0!
1 1 A = |
p—-1 — =49 |
e i
ca T} G e 737 : J

X vog €
PRISTIINONO pu s
.—JQI'):J.)J

) . Y =)

Figure B-1: PCBA

Component ia YOou T

B-2
13

DETA TEPHRATER,

GARY HUME, WARSAW, NEW YORK

After reading the last Aardvark Journal
and in particular the letters on the
EREAK. key modifications, 1 decided to
share my keyboard modification to an
8FDF system. First I disconnected the
leads from the BREAK key. I then
mounted & ®small push-button switch in
the top left corner of the keyboard out
of the normal path of finger travel
while typing, labeled it "BOOT" and
connected the leads from the BREAK key

into one key. The BREAK key 18 &
natural to activate the TTL circuit. As
an added touch, I switched the BREAK key

cap with the RUROUT key cap. The only
thing left is to change a few game
instructions and remember to use the

RUBOUT key for deletion.

I used four IC's to make the SHIFT
key and delay the 0’ key by ten
miliseconds. The 74046’s provide open
collector outputs to interface with the

to it. keyboard outputs. The circuit is
With one problem solved, I then mounted near the keyboard with leads
designed and built a small TTL circuit soldered directly to the PC board
to combine the SHIFT 0" for backspace traces.
, For (se 1 th the Osi FBoien KeysoaRD”
| [
+5V .
+oV
:
[%//ﬂ_,_ 1K _)I'—[‘ I
‘ o Lo 9 1y l
BPER"\
= o
T ot —\A 7472/ & =
Rub OUT
1 7
I
2 N\ [
, LA/
of &
T /YC/bE
l \/.5LﬁPREssumV I
- —1
. ool 7402\ 4 AN
v dhift o~ col A — 7 12 9
_Z jz L v2 Piwv
Vi PiN 16 Pu/sE
S ENVEICPE I
I " —r 7406
L d . -3
\ o ’L O = B .£;£1__>
R Y /2 [v g
L PING
I

By Gnrry Home

14

RALFH SHERRICK, HARRISBURG,
FPENNSYLVANIA

4-B Solder a jumper from 610 board J3-2
to MPI J1-2

(This is listed as a spare by MFI)

6-B Cut the trace from U72-1&. You can

After reading my Aug. Aardvark Journal I use the plated

was especially interested in Dave

thru holes nearby for solder pads.

Fompea's disk modification and Dave

Sugar’'s pokes for 086SD. . 9. Change to read...connect the 74123
I think Dave's mod is fantastic-the pin 4 to added

way 08I should have done it the first 74L802 pins 2 and 9.

time around. However, Dave stopped a

little short of something for the man 13, Connect U77"A"-3 to U&7-6 (melect

who has everything-or at least the guy "A" signal)

who has dual floppy drives. 14, " "U77"C"-8 to Us7-T (select
I have taken Dave's modification "B" signal)

and added logic gates for dual drives 15. " " U77"B"-4 to U75-1 (motor

and now I have complete automatic "A" run)

operation. No special addressing, no 16. " "U77"D"=-13 to U75-3 (motor

switches to throw, Jjust call up either "B" run)

drive and you have it without fuss. 17. The "A" drive wiring should be OK

Note that the numbers shown in the but you will need

Journal (on U76E&,7) were reversed. to cut the trace on the "B" drive

Also be sure to tie (CLR-1,CLR-2) pins 3J at the edge

& 11 high on the 74L8123 as shown and connector Ji-16.

watch polarity on capicitors Ci1-C2.

18, Locate a pad at J1-2 and solder a

To Dave's instructions for the Jumper from Ji-2
modification, add the following for 2 to Ji-16,
drives:
- A Moter "A”
| A 1 A To MPI
yH 14 CuT ¥ _
| e R A R e Par o man AR
vf | 3
l 15 1 | 2 i% aJuTl
o o 2 T 39312
| Ls M I =
12% | 3 | :pL P
l 0-7G V7GR Y. | A |
| Rﬁg \ 17 IQMPI
| PR7 o 7 J1-8
CuT .
| R3Y
I “RUI\/" - - - __ g =
! |
out
l | X
| | _ Motz 'R
oTorR “B" RonN
| 1 > 5[:>§LET 3332 To MPI
| | : di-2
5. | ‘ 10
Y, |
i o=
2 v77B
I
|
| € 8= 10 iamaa"lﬁ :
1oz | C1P DISK DRIVE

v77C uw77D * CONTROL'

8-27-81 R.Sherrick |

1 xxkkx LIVING PATTERNS XkkxxX

3 REM by: BRUCE ROEINSON & AL STANKEWIC
Z

10 IFPEEK(890)=161THEN1S

13 GOsSUBS2000

15 GOBUR4AF000

18 ULl=PEEK (129) :U2=PEEK (130) : POKE129,0:
FOKE130,212:Us=" ":FORU=1TO7

20 Usi=Us+Us+" "1NEXT:POKEL29,Ul: POKELTO
U2
21
28

26

FORQ=S4021TOS4300: POKER, 321 NEXT
RE=252: ES=2221 SR=57100
IFPEEK (S8R) =222 THEN26

27 CG=32

28 1=321 FOKES6B832,0: IFPEEK (57088) < 128TH
ENI=64

29 POKE11,0:1POKE12,253

30 X=USR (X) 1 J=PEEK (531) 1 IFJ=13THENPRINT
: GOTOIO

40 IFJ=32THENPRINT"
41 IFJ=127THEN4S
42 BOSUELO0
GOTO30
POKE11,103: POKEL2, 2
FOR@=1TOPEF 1 X=USK (X)
IFPEEK (8R) =RSTHEN29
IFPEEK (SR) =ESTHENRUN
NEXT

IFJ<SB8ANDJ »47THEN110
IFJ=85THENCU=CU~1: POKECU, CB: RETURN
IFJ=77 THENCU=CU+1 : POKECU, CB: RETURN
IFJ=72THENCU=CU~-11 POKECU, CG1 RETURN
IFJ=7STHENCU=CU+11 POKECU, CB1 RETURN
IFJ=74THENGI=GI+1: GOSUR400: RETURN
BOTO150

IFJ=95THENGOSUR200 s RETURN

IFJ »240THENGOSUBI00: RETURN

109 PRINT"¥"j:RETURN

110 IFJ=48THENPRINT ™KKk KK KK KK KK KKK KKK K
XXKKK" g : RETURN

120 FORK=1TOJ-48:PRINT" %"y :NEXT1RETURN
150 IFJ=89THENCU=CU-I-13:POKECU,CG: RETUR
N

152

"3 :BOTO3O

60

100
101
102
103
104
105
106
107
108

IFJ=73THENCU=CU-I+1:POKECU,CG: RETUR

154 IFJ=78THENCU=CU+I-1:POKECU,CG: RETUR

156 IFJ=44THENCU=CU+I+1:POKECU,CG: RETUR

N
N
N
160
200
210
299

GOTO107

KL=PEEK (512) 1 POKES40146+KL , 32
POKES4015+KL , 951 POKES12, KL~1
RETURN

300 FORK=1TOJ-2401PRINT" "yiNEXT:RETURN
400 IFGI/2=INT(GI/2) THENCG=32:POKECU,CB
t RETURN

401 CG=42:POKECU,CG: RETURN

49000 DATABORDER

49002 READAS: IFA%$< »"BORDER"THEN 49002
49004 FORQ= 5900 TO 5990 :READM:POKER,M
tNEXTQ

49008 DATA165,255, 164,232, 145,240, 136,2
08, 251, 164, 233, 145, 242, 200, 208

49010 DATA2SX,162,3,181,244,149,235,202
,16,249,160,0, 166,239, 165

49012 DATA2SS, 145, 235,24, 165,234, 101,23
s, 133, 235, 144, 2, 230, 236, 202

49014 DATAL6, 238, 166,239, 165,255, 145,23
7,24,165,234,101,237, 133,237

45016 DATAL144,2,230,238,202,16,238,96,2
34,234,36,36,36,36,36

459018 DATA3L, 36, 36,3b,36,36,36,36,36,36
2 36,36,36,36,36

16

49020 DATAISL
49050 GOTO493T00
49100 =
LENGTH
49110
GTH
49120
ENT
49130
ERS
49160
49170
MEMORY
49180
49190
49200
49500
493510
49520
49530
49540
49550
49560
49570
493580
49590
49600
49610
49620
49649
49650
49651
49652

EB (232)
BOTTOM S8TRT

TOP
E9

E8=232

(233)

TOP LEN
E9= BOTTOM LENGTH EA=INCREM
EF (239)= LENGTH OF DOWNWARD BORD

FO,Fi=
F2,F3=

TOF LEFT BORDER OF SCREEN
BEGINNING OF LAST PAGE IN

F4,F5= CONST. FOR UPPER LEFT
Fé6,F7=CONST. FOR UPPER RIGHT
FF=RORDER GRAPHIC
POKE241, 208: POKE240,0
POKEZ43,211: POKER42,0
POKE24%5, 208: POKE247, 208

REM TOP LEFT
POKE244, 4

REM TOP RIGHT
POKE246, 29
POKE232, 128
POKE233, 128
POKE234 , 32

POKE25S, 32

POKE239, 32

CU=S3776

PRINT

PRINT" SCREEN SIZE? 1
PRINT" 2
PRINT"

- 24X24"
- 285X25"

3T - Wrap-
around"
POKEL11,0:FOKEL12, 2531 X=USR(X)
ONPEEK (531) -48G0T049980,49657,510

49655
49656
QO
49657
49700
49730
49730
49735
49980
49990
S0000
S0001
S0002
S0004

PRINT

POKE241, 2071 POKER240, 224
POKE24b, 30

CU=53745

GOTO49990

PRINT

POKES915, 251

DATALIFE

IFPEEK (590) =161 THENRESTORE 1 RETURN
READAS$: IFA$< >"LIFE"THEN 50002
FORE=S90TO712: READM: POKER, Mt NEXT
50006 POKE12,2:POKELL, 103

50008 DATA161,33,0,1,2,32,34,64,65,66,1
69,0,133,224, 133

50010 DATA226,169,208, 133,225, 169,28,13
x,227,96,32,88,2,162,8

50012 DATA169,0,133,228,188,79,2,177,22
4,201,42,208, 2,230,228

50014 DATAZ02,16,242,201,32,240,14, 164,
228,192,3,240,16,192,4

50016 DATA240,12,169,32,208,8,164,228,1
92,3,208,2, 169,42, 160

50018 DATA3S, 145,226, 230, 224,230, 226, 20
8,200, 230,225, 230, 227, 165, 225

50020 DATAZ01,212,208,190,32,88,2,160,0
(177,226,145, 224,230, 224

50022 DATA230, 226, 208,246,230, 225, 230,2
27, 165,225,201, 212,208, 236,96

50024 DATAR34, 234, 165

50025 S=6000

50026 FORT=0T0O9:READM: FORQ=0TOB8: POKES+Q
X10+T,M:NEXTQ:s NEXTT

50030 DATA 160,0,177,224,201,42,208,2,2
30,228

50035 FORQ=0TO8: READM: POKES+QX10+1, M1 NE
XT

50040 DATA bb, 65, 64,34,32,2,1,0,33

S0050 POKESZ24,76:FOKESL2S, 112: POKESLR2E, 23

S0060 POKESLOID, 76: POKEGOF1, 126: POKELOY2

2

S0065 POKE709,76:FOKE710, 12: POKE711, 23

S0070

RN

S0080

XT

50090 DATAL128, 129, 130,66,64,2,1,0,65
50100 POKEGL1, 241 POKELSS, &5

50200 RESTORE: RETURN

51000 POKE247,204: POKE24S, 204

S1005 POKE241,207

51006 CU=S3713

51008 POKEZ240, 1460

51010 GOTO49980

52000 PRINT:PRINT:PRINT:PRINT:PRINT
52010 PRINT"To PRINT Stars:"

S2020 PRINT"
S2030 PRINT"
S2040 PRINT"

#’8 give you stars."
Cont #'s for spaces."
Cont 0O for backsp."

S2050 PRINT
S2060 PRINT"Star Cursor:"

S2070 PRINT"
S2080 PRINT"

Keys are around J,"
J changes cursor."

S2090 PRINT
52100 PRINT"RUBOUT Starts patterns."

S2102

INT

S2110 PRINT"R BHIFT Stops patterns."

S2112

INT

S2130 PRINT"ES8CAFE Runs again."

S2132 FORI=1TO&L:PRINTCHRS (138) s t NEXT1 PR

INT

52900 RETURN

1 REM X%%PHONE NUMBERYXX%
2 REM BY BRUCE ROBINSON

S REM
E 120

8 LP=8

9 POKELS,81
10 GOBUEL1000
11 PRINT

12 X=0

14 PRINT"HIT ANY KEY TO START":X=USR(X)
1 SAVE

PRINTTAR(28) 3

FOR@=1TO3: PRINTN(Q) ; : NEXT

PRINT"-";

FOR@=4TO7:PRINTN (@) 3 sNEXT

15
16
17
i

19 PRINT:FRINT:PRINT

20
30
40
45
S0
&0
70
100
102
104
106
108
110
112
120
130
200
210
220

250

FORA=1TOY (1)
FORB=1TOY (2)
FORC=1TQY (3)
FORD=1TQY (4)
FORE=1TOY (3)
FORF=1TOY (&)
FORG=1TOY (7)

PRINTMID® (A% (N(1)) ,A, 1)
PRINTMIDS (A% (N(2)),B, 1)}
PRINTMIDS (A% (N(3)),C,1)3
PRINTMIDS (A% (N(4)),D, 1)}
PRINTMIDS (A% (N(S)) ,E, 1)
PRINTMIDS (A (N(&)) ,F, 1)}
PRINTMIDS (A% (N(7)) ,G,1)3

X=X+11 IFX *>LPTHENPRINT: X=01 GOTO200
PRINT" "y
NEXT:NEXT:NEXT:NEXTtNEXT:NEXT:NEXT
FORR=1T08: PRINT: NEXT

POKES17,0

STOP

IFFEEK (57088) »127 THENRESTORE: RETU

FORQ=0TOB: READM: FOKES+Q%10+1, M: NE

FORI=1TO&: PRINTCHR® (135) s : NEXT: PR

FORJ=1TO7: PRINTCHR® (1335) s t NEXT: PR

IF NOT PRINTING RIGHT, ADJUST LIN

1000 DIMA%(11):REM PREVENTS 08I MACHINE
S FROM CRASHING

1010 FORE=0TOS: READAS (@) s NEXT

1020 DATAOOO, 111,AEC, DEF,GHI, JKL, MNO, PR
g, TUV, WXY

1030 POKE11,0:POKELZ, 253

1100 Q=1

1110 FOR@=1T0O7

1120 PRINT"YOUR NUMBER? "3

1130 X=USR(X)

1132 J=PEEK (531)

1134 PRINTCHRS (J) 3

1140 IFJ>47 ANDJ<SBTHENN (@) =J-481 Q=0+1

1150 IFQ<BTHENL 130

1200 FORQ=1TO7

1210 Y(Q)=3

1220 IFN(Q) <2THENY (@) =1

1230 NEXT

1999 RETURN

LIFE FOR TWO

Life is one of the original and oldest
computer games. It was initially played on
teletype type terminals with rather primitive
early computers. The rules are simple, but,
as in all the good games, they lead to rather
complex strategies.

Life is played on an N X N matrix.
Animals are placed on the matrix dots. The
rules are:

1. Any animal surrounded by more than 3 other
animals will die from overcrowding.

2. Any animal surrounded by less than 2 other
animals will die from lonesomeness.

. Whenever 3 animals surround the same dot,
they will birth a new animal in that dot.

We have included here what Robinson &
Stankewicz call "Living Patterns" which is
one of the finest partially machine code
Life games available for the CiP. As written,

it works on 8K Basic in Rom machines only.
For owners of other machines, I would
suggest that vyou look in the old issues of

the AARDVARK catalog. We published a Life
game done in Basic which will run on any 0SI
machine. It should be emphasized that the R
& S game is much better.

The only bad thing about Life, as
fascinating as it is, is that There is no
comptetion involved and it eventually tires.
R % 8 have therefore, come up with what
should be Opus Magnus end-of-the-line
end-all-and-be-all of Life games-"Life for
Two". This one is competitive. You can
either enter new animals on each turn or
allow it to free run after vyou put in an
initial pattern. It should run on virtually
any 0SI machine. I think, aside from the
fact that the cells are picked by pressing a
letter and a number key, that the

instructions are self explanitory. It is one
of the more difficult and more competive
games which we have published in this

Journal.

17

GOTOZ: BRUCE ROBINSON

GOSUR2T000

LI=32: IFFEEE(57088) < 129THENLI=64
GOSUELIB000:DIMF (2) ,A(7,7) : GOSUBR000
IFAAXOTHENRX=1.5/AA

FORE=0TO7: FORR=0TO7: A(E,R) =2:NEXT:NEX

MNU D -

T

10 C=53454-903% (LI=64) -W1+32% (7—-H1) -32X%
(7-H1) X (LI=64)

15 FORE=7680TN7780: FOKER, 200: NEXT

30 PDKEC—LI—l,204:POKEC—LI—1+W1*3,205:P
OKEC-LI-1+LIX3%H1,203

31 FPOKEC-LI-1+LIX3¥H1+W1%3, 206

40 FORJ=1TOWI*3Z-1:FPOKEC-LI-1+J,131:FOKE
C+HIXLI*Z-LI-1+J,132: NEXT

41 FORJ=1TOH1*3-1:POKEC—-LI-1+J%LI,140:F
OEKEC—-LI-1+W1X3+LI%J, 139:NEXT

48 REM FORF=1TOZX

52 FORJ=1TOW1: POKEC-LIX2-3+3%J,J+48

S3 NEXT:GOSURZOO

54 FORJ=1TOH1:POKEC—-LIX3-2+3%JXLI,J+64:
NEXT: IFA=1THENIOOO

55 IFLS=2THENSS8

56 §68=2:FORF=1T0Z: GOSUBRZ100: NEXT: GOTOB3

58 FORF=1T0Z:GOSURZ200:FRINTALS", three
animals"; : GOSUR100

61 A(HX=1,HY—-1)=2:NEXT

63 FORF=1TOZ: GOSURZI200: FRINTAZ2%", three

animals"y : GOSURL100

68 A(HX-1,HY-1)=1:NEXT:G0TO8S

83 GOSUBRZ00

85 FORJ=0TOW1-1:FORK=0TOH1-1: IFA(J,K)=0
THENA(J , k) =3

87 NEXT:NEXT

88 FORJ=0TOH1-1:A(W1,J)=100:NEXT:NH=3:N
C=3: GOSURZ00: GOTOSO0

100 E=0:EE=0:FORM=1TOZ2

101 IFLS< >2THENFPRINTCHR$ (13) "Choose an
animal . a

105 BOSURIB8S0Q0: IFJ=127 THENGOSUR12000: GO
TO100

107 IFJ<64THEN1&6O

110 J=J-64: IFEE=1THEN1&8

115 IFJ<10RJI>HITHEN1B8O

120 EE=1

145 HY=J:NEXT:G0TO171

160 J=J-48: IFE=1THEN11S

168 IFJ<10RJ>WITHEN18O

169 E=1

170 HX=J:NEXT

171 RS=A(HX—-1,HY-1): IFRS<10RRE>2THENRET
URN

180 FPRINTCHRS (13) "XXXILLEGAL XXX

"3 :GOTO100

200 CX=INT(RND(8) % (Wi1-1)):CY=INT (RND(8)
X (H1-1))

210 J=J+1: IFJ>20THENPRINT: RUN

230 IFA(CX,CY)=10RA(CX+1,CY)=10RA(CX,CY
+1)=1THENZO0O

240 A(CX,CY)=2:A(CX+1,CY)=2: A(CX,CY+1)=

2

250 RETURN

300 FORJ=0TOW1-1:FORK=0TOH1-1

310 L=C+3XJ+IXkKxLI

320 ONA(J, k) GOTO340,350: GOTO3SS

340 GOSUR3110:G0TO380O

350 GOSUB3120:60TO3BO

355 POKEL, 165:POKEL+1, 32: POKEL+32,32:F0
KEL+33,32: 60TO380

380 NEXT:NEXT

390 RETURN

500 GOSUR3IZ200:PRINT"COMFUTING NEW ROARD
"3 IFA=1THENS7S

501 IFEY=0THENO?=1:G0TOS10

507 IFL$="Y"THENSZ21

510 GOSURSSOO

18

511 GOSUEBEZIO0: GOSUBS16: IFD9=1THEND?=0: IF
LS« *2THENS40

512 IFD9=1THEND?=0: IFLS< *2THENS40

515 GO0TOS21

516 F(1)=0:F(2)=0:FORJ=0TOW1-1:FORK=0TO
H1-1:0NA(J,K)GE0TOS517,518,519

S17 F(1)=F(1)+1:60T0S519

918 F(2)=F(2)+1

519 NEXT:NEXT: IFF (1)< 20RF (2) <2THEN1 1000
320 RETURN

G21 IFLS<H2THENFRINTCHRS (13) "COMPUTING
MOVE. "3

530 GOSURSO0O0

S31 IFL$<>"Y"THENS40

532 GOSURZOO

533 PRINTCHRS (13) "COMFUTING EROARD "

534 GOSUBSS00: GOSURTO0: GOSUES16

540 IFLS=2THENGOSUR18900: PRINTCHRS (13) *
MOVE, "AZ2$".";

544 GOSUER100

545 IFA(HX—1,HY=1) <3THENFRINTCHRS (13) 3
Try again!'!";:G0OTOS40 '
549 IFL$="Y"THENA (HX-1,HY-1)=1:G0OTOS70
S50 IFHX< >CXORHY< *CYTHENS&0
551 FORJ=1TOZ:PRINTCHR$ (13) ;"
LLEDKXX";

552 FORK=1TOS00:NEXT

553 PRINTCHR$ (13) "

554 FORE=1TO3I00:NEXT

557 NEXT

G559 “E=C:EE=0:FORM=1T0O2

560 A(HX-1,HY-1)=1:A(CX-1,CY-1)=2

S70 IFL$="Y"THENFRINTCHRS$ (13) "COMFUTING
NEW BOARD "3 :GOSUBRZO0:GOTOS7S

572 GOSUBRI00: GOTOS8O

573 GOSUBRSS00: GOSURZIOO: GOSURS16

580 REM

520 GOTOSO0

3000 FORRI=1TOAA: GOSURIZ200: FRINT"MOVE "
Al$; 1 85=2: GOSUB3100: 55=1

3005 IFRIXAXTHENIFRX *RND (8) THENRI=AA: GO
TO3020

2007 IFCP=1THENZSOO

Z010 GOSUBZIZ00: PRINT"MOVE
(a]8}

3015 IFRI>AXTHENIFRX>RND (8) THENRI=AA
IO20 NEXT:60T08S

3100 GOSUR100:A(HX—1,HY—1)=88-CF:L=C+3%
(HX=1) +3% (HY—-1) xLI
3105 IFSS-CP=2THEN31Z20
3110 FOKEL, 176:POKEL+1,178:FOKEL+LI, 177
FOKEL+LI+1,175:RETURN
3115 L=C+3% (HX—-1)+3% (HY—-1) %LI
3120 FOKEL, 189:FOKEL+1, 190: POKEL+LI, 190
FOKEL+LI+1,189:RETURN
F200 PRINTCHR$& (13)"

"CHR% (13) 3 : RETURN
3500 GOSUBZZO0: PRINT"COMFUTING MOVE"j3:I
FRI=1THENZ&00

3510 GOSUBRSOQO: HX=CX:HY=CY: A (UJ,UK)=2:6
O0SUB3115:6G0TO3015

FLO0 HX=HX+1:HY=HY+1

3605 IFHX»1+H1/2THENHX=HX-2

3610 IFHY>1+W1/2THENHY=HY-2

3620 A(HX-1,HY-1)=2:GOSUB3115:GOTO3015
SO00 F(1)=0:F (2)=0: GOSURSOOS

S002 IFLS=2THEN14000

S004 GOTOS01S

S005 N=7620:FORXX=0T06: FORYY=0TQO7

S006 LK=A(YY, XX) : IFLK<ITHENF (LK) =F (LK) +

X ¥ *xCANCE

"AZ%; : GOSUB31

S007 IFLKE=3THENLK=0
S008 IFLK>ZTHENLK=200
S009 IFYY: =W1iTHENLK=200

S010 FOKEN, LE3sN=N+1:NEXTzNEXT

S011 F(2)=F (2)+1

5012 RETURN

5015 FORJ=0TOW1-1:FORK=0TOHI-1: IFA(J,K)
=FTHENS017

5016 FOKE7690+J+8%K,A(J,K) :G0TOS018
5017 FOKE7690+J+8%k, 0

5018 NEXT:NEXT

5019 Ho=0:Cob=0

5020 FORJ=OTOH1~-1:FORK=0TOW1-1

5030 ONA(J,K)GOTOS040, 50501 GOTOS060
5040 Hb=H&6+1:BOTOS060

5050 Cb=Cé+1

5060 NEXT:NEXT

5065 Co6=Co/ (H1AW1) t Ho=H&/ (H1XxW1)

5070 CC=-1536XCo6+492

5080 IFC&»=.32THENCC=0

5090 IFC&<=.19THENCC=200

5092 CH=-294%Hb+207

5094 IFH6>=.36THENCH=100

5096 IFH&¢=.16THENCH=160

5100 TU=-9E10

5110 FORJU=OTOW1-1:FORKU=0TOH1-1

5112 IFA(JU, KU < *ITHENS150

5115 POKE7690+JU+KUX8, 2

5125 GOSUBS200

5126 POKE7690+JU+KUX8, 0

5130 TA=CCXDC-CHXDH

5134 IFC4<2THENTA=TA-20000

5136 IFH4<2THENTA=TA+2500: IFH4< 1 THENTA=
TA+5000

5140 IFTA>TUTHENTU=TA: UJ=JU: UK=KU

5150 NEXT:NEXT

5160 CX=UJ+1:CY=UK+1

S165 IFL$="Y"THENA (UJ,UK)=2

5170 RETURN

5200 POKE11,94:FOKE12,29: X=USR (X)

5214 FOKE11l,0:POKELZ,253

5250 DC=FEEK (8104)-100

5252 DH=PEEK (8103)—-100

5254 C4=F (2)+DC:HA=F (1) +DH

5299 RETURN

S500 FORJ=OTOW1-1:FORK=0TOH1-1:FOKES140
+J+KX7, AT, K) :NEXT: NEXT

5501 GOSURSOO0S

5510 FOKE11,94:FOKE12, 293 X=USR (X) : POKE1
1,0:POKEL12, 253

5685 IFNG=1THENRETURN

5687 NH=03:NC=0

5690 FORQ=7S53T07650: IFPEEK (@) =1 THENNH=
NH+1

5700 IFPEEK (@) =2THENNC=NC+1

5710 NEXT

5730 N=7553:FORX=0TOH1-1:FORY=0TO7:A (Y,
X) =PEEK (N) s N=N+1

5735 IFA(Y,X)=0THENA (Y, X)=3

5740 NEXTY:NEXTX

5800 RETURN

9000 REM

9020 GH=1:GC=2:E=3:BC=4: TC=5: BH=6: TH=7:
RETURN

11000 PRINTCHR$(13)" % THE END
* ll:

11010 GOSUR1BS00: IFJ=127 THENGOSUE1 20003
GOTO11000

11020 PRINT:RUN4

12000 FORJIJ=0TOW1—-1:FORK=0TOH1-1

12010 L3I=PEEK (B140+J+KX7) : POKES140+J+kX
7,8(I,K) 1 AT, K) =L3

12020 NEXT:NEXT

12025 PRINTCHR$& (13) "

a

12030 GOSUB3I0O0

12040 FORJ=0TOW1-1:FORK=0TOH1-1

12050 L3I=PEEK (8140+J+KX7) : POKEB140+J+KxX
7,603, K) 1AW, K)=L3

12060 NEXT:NEXT

12070 X=USR (X) : IFFEEK (531) =127THEN12090

OLD ROARD

19

12080 GOTO1Z2070

12090 PRINTCHR (13)"
X "3 1 GOSUBI00: RETURN
13000 X=0:FORJ=1T04: X=X+1

13010 NEXT:STOF

14000 REM

14010 GOSUB18900: FRINTCHRS (13) "MOVE,
1", u.=
14015
14020

¥XXCURRENT ROARDX X

"A

GOSUBR10Q0
CX=HX:CY=HY

14040 UJ=CX-1:UK=CY-1

14045 IFA(UJI,UK) <ZTHENFRINTCHR® (13) "TRY
AGAIN! ! "3:60TO14010

14050 GOTOS165

17000 UL=FPEEK (129) : U2=FPEEK (130) : POKE129
LO:POKELZ0, 212: U%=" ":FORU=1TO7

17010 Us=Us$+Us+" ":NEXT:FOKE129,U1:POKE
130, U2: RETURN

18000 GOSUER17000

18010 PRINT"ONE OR TWO FLAYERS? "j

18020 GOSUR18300: IFJ<490RJI*SO0THEN1B8020

18028 LS=J-48:FRINTCHR® (J) : PRINT: PRINT:
IFLS=1THENCF=1

18031 PRINT"FREE RUNNING?":GOSUR18500:P
RINT:PRINT: IFJ< *89THEN1803S

18032 A=1:PRINT"MAX. ANIMAL ENTRY?":G0S
UR18500: AA=J—-48

18034 FRINT:PRINT: AX=INT (.5+AA/2)

18035 IFLS=2THENINFUT"NAME, PLAYER 1"3A
16: INPUT"NAME, PLAYER 2";A2%

18036 IFA=1THEN180&0

18037 Al$=LEFT$(A1%,7) :A2%=LEFT$ (A2%,7)

18040 PRINT:PRINT"Take turns separately
73 1 GOSUB18S00

18050 L$="N":IFJ=89THENL%="Y"

18051 PRINT" "L%

18052 IFL#$="N"ORLS=2THEN180&0

18053 PRINT:PRINT: PRINT"WANT FIRST MOVE
? "3 :GOSUR18S00

18088 IFJ=89THEND?=1:FRINT"Y":G0T0O18060
18057 PRINT"N"

18060 REM

18070 PRINT:FPRINT"Width and Height? "j

18080 GOSUR18300: IFJ<S00RJI *SSTHEN18080

18090 Wi=J—-48:FRINTCHR$ (J) ", "3

18100 GOSUR18500: IFJ<S00RJI >*SSTHEN18100

18110 H1=J-48:FRINTH1

18200 GOSUER17000:RETURN

18500 POKE11,0:POKEL12,2583: X=USR(X) : J=PE

EK (S531) : RETURN

18900 PRINTCHR$ (13) "

"3 s RETURN

25000 POKE133,0:POKEL134, 29

25022 FORG= 8105 TO 8113 :READM: FOKER,M
:NEXTR
25024
27004
:NEXTO
27006 REM12,29 11,94

27008 DATA169,100,141,167,31,141,168,31
2 162,3,169,0,157, 163, 31,202

27010 DATAZ08, 250, 160,9,190, 168,31, 189,
234,30,240,18,170,202,208,5

27012 DATAZ38, 164,31,208,6,202,208, 6,23
8,165,31,238, 166,31, 136,208

27014 DATAZ27,170,240,22,201,200, 240,50
,173,166,31,201,3,240,42,201

27014 DATA4, 240,38, 222, 166,31, 169,0, 240
W 32,173, 166,31,201,3,208

27018 DATAZ45,162,2,173,164,31,205, 165,
31,48,1,202,208,8, 169,80
27020 DATA141,24,29,76,0,
138,172,24,29,153, 128, 29
27022 DATAZ06,24,29,240,3,76,8,29,96,36
27024 RETURN

DATA9,0,1,2,8,10,16,17,18
FORG= 7424 TO 7545 :READM:POKEQ,M

29,254, 166,31,

CLASSIFIED ADS

XNOTE¥* CLASSIFIED ADS ARE $7.93 FOR UP
TO 4 40 CHARACTER LINES. 42.50 FOR EACH
ADDITIONAL LINE.

FOR SALE 081 C2F, 8K MEMORY INCLUDING
CASSETTE. PROGRAMS ALSO INCLUDED.
#3350, 00 CALL (J13) 624-3480

FOR SALE C4F IN EXCELLENT COND.
IMPROVED CASSETTE INFUT (100% LOAD AND
SAVE WITH NO NOISE ON THE MONITOR).
SWITCH SELECTABLE BAUD RATE. ALSO
INCLUDED ARE: AARDVAREK 8K BARE BOARD
FLENTY OF FREE SOFTWARE, ALL BACK ISSUES
OF THE AARDVARE JOURNAL. ALL FOR ONLY
#7850

CALL GARY VOGEL (313) 288-3517

FOR SALE: 081 C2-4P (4K) IN "LIKE NEW"
COND. ; COMPLETE WITH ALL DOCUMENTATION
AND SEND INQUIRIES TO: D. MONTALVO 215
E. 197TH 8T #3J, NEW YORK, NY 10458

FOR SALE: 50% BOARD, CPU WITH FLOPFY

INTERFACE AND CASSETTE INSTRUCTIONS.
UPGRADE TO DISK AT HALF THE COST %1350

X RWARNINGX ¥

OR BEST OFFER. CONTACT LES CAIN, 1319 N.
16TH GRAND JUNCTION, CO, 80501 OR
(303) 24T3-4536

FOR SALE: CiF MODEL 1 W/BK. R8232
INSTALLED ON BOARD. $300. PHONE J.
HYLAND (703)938-7218

FOR ©SALE: C2-8K, 12" MONITOR, TAPE
RECORDER, GAMES, BOOKS $425.00 PHONE: J.
BAKKER (313) &s®-8477, BELLEVILLE
MICHIGAN «“

FOR SALE: C4F CASSETTE COMPUTER IN
ORIGINAL CARTON. AUDIO AMPLIFIER AND A
FEW FROGRAMS INCLUDED. WILL SELL WITH
OLD B&W MONITOR $625 OR W/0 $575, PHONE:
DAVID KOCH (216) 492-4461

FOR SALE: USED CASSETTE TAFES C~10 AND
C-20 (NO CHOICE) .33 EACH. NO REFUNDS.
CONTACT AARDVAREK.

FOR SALE: 08I 573 BOARD (EPROM BURNER)
ASBEMELED, USED. FOR 48-PIN BACKFANE
(C2/74/8P) . SOFTWARE ON 5" DISK.
$100.00 CONTACT AARDVARE.

WHEN PHONING IN ORDERS AFTER 4:00 P.M,, THERE IS NO
GUARANTEE IT WILL BE PROCESSED OR EVEN RECEIVED.

SOMETIMES THE

ANSWERING MACHINE DOES NOT RECEIVE THE FULL MESSAGE, AND SOMETIMES WE

CANNOT READ RODGER'S WRITING!

S0, FLEASE CALL BETWEEN THE HOURS OF

8100 A.M. AND 4:;00 P.M,. TO INSURE CORRECT ORDER FLACEMENT. THANK YOu

JUDY & CYNDI. 9
/

v

AARDVARK

TRGHIICAT, SER YicES
2 ou o
ngled Lake, M;__gggge

j&_{_% f (_;é/vLC—’(.L

(313) 669-3110
EASTZRN STANDARD [INE

BULK RATE
U. S.POSTAGE
PAID

WALLED LK.,MI.
Permit No. 5

20

