"AARDVARK JOURNAL

VOLUME 3

INDEX

RELOCATING WP-6502 PART Il......1-2
VIDEO PATCH FOR A5D.uscsscnncusned
SOUND PROGRAM, G. ARTMAN..::cs.«.3-4
COMMAND MODIFICATIONS 65Dusseas.d4-6b
DISK COMPRESSOR..scessunssssnaanea?7—8
SCREEN PRINT J. SEYBOLD.:vsuweus.8
LETTER; DON VANSYCKEL.vseuwwsswsa®
LOCATING BAD 2114’8 W. MCRICE...9-11
STRUCTURED PROGRAMMING. .::cneeaaa11-13
PARALLEL PRINTER INTERFACE MOD..14
CLUTTER FOR O8I CORRECTION......14-15
FLAGGE TOGGLE) JIM WEIMER..v:us..15

-BASIC BLOCK DELETE CORRECTION...15

ODDS OR EVEN, V. BARBOUR..:2:s..15
QUICK PRINTER OUTPUT3FLEISHMAN..1&
ANIMAL GUESS GAME Il...vcesseuealb—=17
GALAXIA ADDITION..vesesunsnsneaal?
ALIEN II FOR ClE.svvocnnsvencannl?
PING PONG BAME..vscencsssansansal7-18
POOL BAME..cssoevuessnanssnnsassalB=20

ATTENTION BRIFFIN FAMILY:

Last months article on ‘The Hand
Assembly of Programs for 0SI°'s Machine
Language Monitor! was written by none
other than your very own GRANT GRIFFIN.
Now are you impressed? You should be, it
was a very good article. Keep up the
Good Work Grant.

REQUEST TO JOURNAL AUTHORS:

Your cooperation is greatly needed if
you have & printer and are sending in
articles to be published in the Journal.
We print letters, articles, listings
etc. to 40 wide and many of you are
sending them in at 70 wide. If at all
possible when sending them in please
print at 40 wide. Also I sometimes make
mistakes trying to read some of the
listings sent in when retyping them.
Putting them on cassette may save some
aggrivating error correcting in a good
program. With them on cassette, they can
be printed from the computer,error
free. Thank you for your support. Cyndi

NO.3 AUGUST 1982

RELOCATION WP-46502 (PART 2)
BY John T. Roecker

I was overjoyed after purchasing an
Epson MX-80 printer about two weeks ago.

I had relocated WP-4502 in order to use
it with my CIP with a C18 Monitor ROM.
I knew WP-4502 was working because I
could create a tape of an article or
letter and take the tape to a friend who
had a printer to have it printed. This
was inconvenient and also could possibly
tax a friendship. I had the RS232
interface populated so all I had to do
was connect the Epson to it. I ran a
quick test in BASIC and the printer
worked fine. However, when I attempted
to use WP-46502, the printer did not!
After much head scratching I remembered
that I had to use a different output
routine in my C18 Monitor ROM in order
to output to tapes using WP-4502. I
surmized I would have to use this
routine to output to the printer also
Those of you who have CIE/C2Es can rest
easy because these ROMs appear to use
the standard output locations. A quick
test checked my idea, the printer would
work with WP-6502 with another change. A
quick phone call to Rodger Olsen
reinforced the need for a follow-up
article.

My modification to WP-6502 was to add
& new command, the Print command, to the
WP-6502 repertoire and to disable using
the View command to output to the
printer. Those of you with standard
08Is or with the CIlE/C2E monitor ROMs
may find this new command useful.

I used the following steps to add the
Frint command to WP-46502. All address
locations mentioned are the original
addresses from your nonrelocated version
of WP-6502. All instructions with an X
behind them will have to have their
address fields modified to suit vyour
relocations.

1. Expand the WP-6502 menu so that the
Print command may be added. The menu
plus other words outputted to the screen
are located at memory locations $070D
through #0783. I modified the menu to
have it look like this:

~-=WP

6502

Type

View

Blk View

G/Edit

L/Edit

Mave

Print

Zap

R/Tape

W/ Tape

1 used the 08I Extended Monitor to This is after the change:

relocate locations $0736 through the end $OFBF EOS7 CPX #%357 Check for
of the cold start code of WP-6502, W/ Tape
$OFDO, by 5 bytes. Then I added the $0F91 DOO3 BNE #0F96 L
following data at %0736 $0F93 20F30E JSR $O0EFJI X —
$0732 4DLF76ES Move $0F9&6 EOSO CPX #%$50 Check for Print
#0736 S072696EF4 Print $0F98 DOO3 BNE $0OF9D
$073B SA&L1IFO Zap $OF9A 4C9807 JMP #0798 % Print output
$OF9D 4C6504 JMP #0465 % Not legal
2. Contract the View command code the command
elminate the Pr? after View. The View $OFAO SDOO
command code is located at memory $OFA2 40 Starting text
locations $0795 through $09F9. I dropped location
the instructions located at %0798,
$079A, $079D, and ®$079F by relocating
$07A1 to $0798. 4. The cold start code will have to be
3. In the process of performing these modified to use the proper data/text
two relocations, I managed to destroy starting location. I have indicated
two instructions. One of these stopped where this is in step 5 abovejy in this
L/Edit and G/Edit from working from the case $0FA2. The amounts of the
menu. The instruction which was relocations will have to modify this
destroyed for this problem was located address. I have reproduced all the cold
at #078F. It should have the amount of start code below. I placed my cold start
your relocations added and subtracted code at %1024,
from its address field. #078F 20940A JER
$0A94 X 1024 A4C LDA #%$4C Store
The second instruction which was 1026 BEEH STA $@d warm
destroyed caused an insert at the End of H1E28 A9OF LLDA #H%@F start
Text to operate improperly. This $1@2A BEER STA $@2 Jump
instruction should be: %0C4& 4CSAOF JMP #1E20 ATGR LDA #$0R instruction
S$OFSA % $1E2E BS@1 STA $@1 —— e
4, Any references which index into the S1EZE A24 LDA #$24 Store
WP-46502 menu may have to be corrected F1ET2 BIGE 8TA @3 cold start
because we added a new command. $1074 AP1E LDA #$1d@ address
References for commands after the new 1@z6 B8L04 8TA $@4 e
Print command will have to have S bytes 1738 APEF LDA #$@F Store
added to the immediate data: $1E3A 8BD420R STA $@242 % starting text —
$1EID ARAR LDA #$A2 address
H$O3JFA AOS2 LDY #4352 $1EOZF 8D41EI2 STA $P241 % ———-—
$04465 A040 LDY #%40 $1E42 AREE LDA #$a@d
$046AD AOSE LDY #%5SB $1E44 8546 STA $46 e
$0787 AOSS LDY #%5% $1046 ADEZFF LDA $FFE2 Test for CIF
$07B4 AO43 LDY #$43 149 DEGA BNE %1655 Branch if not
#07BB CO4E CPY #%4E $104R A914 LDA #%14
$07E2 A0SO LDY #$50 $1#4D BDI&LHZE ¥
$09B0O AO&D LDY #86D $1@5@ AFFF LDA #$FF
$09F0 A0LD LDY #%&D $1652 SD4AGEE STA $0240 X
$0ASE A0&LO LDY #%4&0 $1E55 4CHSEE JMF $E@EE Jump to warm start
$0B12 AO3IE LDY #%3E
$OB4AD A071 LDY #%71 The immediate data in the instructions
$0D01 AO0LO LDY #%460 located at %1028 and $102C will have to
SODOC A0&0 LDY #8460 be modified to suit your relocations.
$0D44 AOLL LDY #8666 The immediate data in the instructions
$O0E19 AOS9 LDY #8359 located at #1030 and #1034 point to the
$O0EA9 AOLD LDY #%4D cold start code.
The immediate data at %1039 and $103E
5. The warm start code will have to be will have to be modified to point to
modified so it will recognize the Print your starting text address.
command. Those of us with C18/C28 Now, after much blood, sweat, and
monitor ROMs will have to add this check some tears those of us with nonstandard
after the switch to the naew output monitor ROMs installed may use WP-46502 .
routine which was added in the last To eliminate all this work, all machine
article. language/Assembler code should start at
Thie is what the code looks like a suitably high address. The
before the change: Assembler /Editor starts at location
$0FBF EO0S7 CPX #%57 Check for W/Tape $0240. I feel this would be a good
$0F91 DOO3 BNE $0OF96 starting address. Then anyone with
$0F93 20F30E JSR $0EF3 X standard or nonstandard monitor ROMs may
S$OF96 4CE504 JMP #0445 % Not legal use your program.
command I have made additions to WP-6502 to

utilize some of the features of my C18
monitor ROM. These additions will be the
third article in this series.

£

RON WHITTAKER, SALT LK CITY, UTAH

Several weeks ago I wrote to R. Olsen
describing the way I have modified my
CiP so that the Video Mod II and the
disk system both work. I also mentioned
that I have the 0865SD V3.3 operating
system and that I had not yet been able
to modify it to make use of the Video
Mod II’s wider display.

8ince then, I have spent many hours
trying to unravel the inner workings of
the operating system. At last I have
been successful! The patch to the 08 is
extremely simple to perform, even though
I etill don’t understand it completely.

It seems there is a block of data
bytes which starts at $32D5. Part of
this block is swapped with page zero
locations EO-F7 which is then usmed to
control size and location parameters of
the video display. Only three of these
locations needed changing to alter the
basic display. The byte at $32E9 is set
at %17 by 08S65D and is the number of
lines in the display. The byte at $32EA
is set at %17 also and is the number of
characters per line. The byte at $32EB
ie the lower order half of the location
of the upper left corner of the display
and is set at $&5. (D0 is in $32EC.
This i the high order half of this
address but does not need to be
changed.) If these three locations are
changed, the video display is also
changed. However, if any of the PRINT!
commands are used, either from within a
program or from the keyboard, the
display reverts back to the original
size. These PRINT! commands are new to
0865D V3.3X and control cursor location
and movement and invoke special screen
and line clear functions. I found three
more data locations, $32F2, $32F3, and
#32F4 which correspond to the same
parameters as the first threej; i.e.
number of lines, characters per line,
and upper left corner, respectively.
These latter three locations are not
swapped out to page zero but do control
the PRINT! commands. By POKEing new
values to these locations and then
S8AVEing these locations on disk, the new
display parameters become a permanent
part of the operating system and will be
automaticallyloaded each time the disk is
booted. There is one word of caution!
All six POKES must be performed at the
same time with no video accessing in
between. Otherwise, the changes may be
modified by the video access before they
are completed. The following BASIC
program will make the necessary changes
to the six locations and then save the
changes on the disk. RUN the program
with each diskette that contains 0845D
V3.3 and each will be changed.

10 PRINT! (28) 1REM. ..CLEAR SCREEN...

20 REM...POKE CHANGES...

30

POKE 13033, 271 POKE13034, 311 POKE 13035, 64
40
POKE13042, 271 POKE13043, 3131 POKE13044, 64
50 REM...SAVE CHANGES TO DISK...

60 DISK!"SAVE 13, 1=3274/8

The values I've POKEd into the six
locations provide the maximum display
size for my monitor which is a TV
modified for direct video input. Other
values may be needed for other systems.

MUSIC FOR C1P

For those of you who couldn’t get
Gerald Artman’s Music program to work I
think I may have the solution. I
misplaced the cassette and didn’t run
off a listing. Sorry about that Jerry!
Well here it is. (see June 82 issue for
the rest of the article if you missed
it.) Heope you enjoy it.

Y N

STON B TSI AN S & 5 & &

Jonumberaed statems

SET UP NOTE ARRAYS, F=FREQ LM Hz
MN$ (18) F (18)

11§ JECK T NEXT
iﬂADF_E77.1B,DHE
FADH, 311, 138, EF, 311,135, E, 329,63, F, 3
TOE#, 369, 99, GF, 369, 99, 6, 391. 99, G,

IATAAE , 415, 30, A, 440, A%, 466. 16, BF, 466

L. 838,0,15.135
GOTOL90

FOLET ThE
11\“ UT NL W SONG OFR ADD": A

AT TEMPO-BESTE FER MINUTE" ;T: PRIN

VALUE (0. 0) "y Be IF B
:GOTO6S
L% F S0 BELOW BASE CLEFT
70 INPUT'OCTAVE (1-5) 30z IFOS0R0< L THEN
FRINTYINVAL ID" : GDTO70

7EINPUTYNOTE NAME" 3 NMS 1 TFRMNS="END " THEN

FOLE: IFNN$=NS (1) THENSO
INT" INVALTD" : BOTO7S
=1 THENF3=FG/4

= (EK :\'-J) TYRFG
L NT (DL /25
TADU-DH*EE6)

~dVE) ST
L | I--- F1s, STHENFR=INT (F)

194K, D1 X

PUT END OF NOTE Me
P FOKEAD9S %, O P

P GOTOL9D,
FOUT ITNE
296, 171 FRINTCHRS (25

CINTHIT SHIFT TO START :WAITS7 100

Qi

)

211, CORE LD, 20 X=USK (X) : FORESS
2Pb, 1 IMNTCHR®)

180 FRINT: FRINT: INFUTYREFLAY " A%: IFAG="
YU THENL &S

189 REM MEML

190 FORX=1TO3X0:FRINTsNEXT: PRINTs PRIMNTY0
FrIONS: " FRINT: PRINT
EOFRINTUEDIT A NOTE':E=Q
SO0 PRINTU'GET SONG FROM TAFE":FRINT"INF
CONEW SOME": FRINT"SAVE S0NG"
2 FINT "FLAY " s FRINT: PFRINT: INFUT"CHOLC
A%=" G THENZES
TFASE=" 1" THENSO
IFAE="G" THENZ 7S
D LR ARE=TRUTHENLAS
225 TFAS="E"THEMNE=1: INFUT"NOTE NUMEER *
s CeC=C~1:60OTALO
230 GOTO190
234 KEM GET ROUTIME FOR TAFE INFUT
23T INFUTUNEW OR ADD TO CURRENT NOTES":
A% TFAS="N"THENSN=1: GOTO24%5
240 SN=NE
245 PRINT"START RECORDER AND HIT SHIFT"
WAITS7100, 254, 2541 FOKES1S, 255
249 REM LOOK FOR HEADER
280 INPUTX: IFXC *0THENZS0
255 INFUTX: IFX=0THEN2SS
239 REM READ IN AND FOKE DIRECTLY
260 INFUTD: IFD=9999THENZ70
263 POKE4O9G+8N, D SN=8N+1: GOTO2&60
270 POEES135, 0:NS=5N-Z: GO0TO190
274 REM QUTFUT TO TARE ROUTINE
275 FRINT"WHEN READY TO RECORD HIT SHIF
T":WAITS7100, 284, 254

279 REM FUT HEADER ON TAFE

280 PORESL7,288:FORX=1TO10: FRINTO: NEXT:
FRINT255: X=1

284 REM GET VALUE SEE IF ENMD MAREER

285 D=FEEK (4095+X) : X=X+1: IFDOR (FEEK (409
S+ X)) =0THENZ29E

290 FRINTO:FRINT1:FRINTO999: FRINT: PRINT
: GOTOZOO

293 FRINTD: GOTO28%

I00 POKESL7,0:G0TOL90

304 REM MACHINE LANGUAGE ROUTINE FOR MU
SIC

Z0S READN, N2: FORKE=NTONZ: READD: FOKEK, 0: N
EXT

F10 E=INT(N/25&) s FOKEL2,0: FOREELL, N-O®2E
b RETURM

315 DATAS60, 691

F20 DATALGG,242,142,0,223,170,202,234,2
34,234,234, 234, 274 _ ;

325 DATAZZ4, 234, 234,234,234, 234, 208, 2368
(240,0,240,0,240,0,240,0

330 DATAZ40,0,162,0,142,0, 285,170,202, 2
34, 234, 254, 234, 234, 24, 234

ZID DATAZEZY, 234,234,234 , 234 , 2724, 274
. 208,238, 198, 243,208,5, 198, 244

S40 DATAZ08, 190,96, 240,0, 240, 0,208, 187,
234,169,0, 133,240, 169, 16

345 DATAL 241,169,255, 133, 24
774280, 13; 200,177,240,
380 DATAR44,200,177,240,208, 2, L33, 242, 2
01,1,240,22,32,48,2, 200

35S DATAZ4, 152,101,240, 133, 240, 144,52, 273
0,241, 162,285, 202,208, 253,76

360 DATALIN, R, 96,0709

ZeS END

2,160,0,1

KENNETH BOOTH, BOSQUE FARMS, NEW MEXICO

0f all the BASIC commands, I cannot
think of one as useless as the LET

command. Ite use is optional so I ~—

personally never use it and have never
gotten into trouble because I didn’t.
What I would like to have 1is a BASIC
command that would clear the screen for
me. An instant machine code screen clear
would be of much greater use to me, and
probably to vyeu, then the LET command.
The new command, call it SCL, would be
just like any other BASIC command in
that it wouldn’t require the preliminary
setup that the UBR(X) function requires.
Just enter SCL and the screen is
instantly cleared. And it would work in
the direct mode or inside a program. My
BABIC now has this command and your
BASIC can too, but, if you feel that you
cannot do without the LET command then
read no further because we are about to
do away with it. The modifications to
BASIC to enable us to do this are very
simple and we will also incorporate
some modifications to BASIC’s addition,
subtraction and multiplication routines
that enable BASIC to run between 10 and
30 percent faster!

How does BABIC know where to go when
it encounters a command? Our BASIC, like
most others, uses a look-up table to
find the command and a dispatch table to
know where to go once it has found the
command. The loock-up table is a
sequential list of all the commands ir_
our BASIC’s inventory and the dispatch
table is a sequential list of addresses
of routines that service these commands.
The position of the address pairs in the
dispatch table will match the position
of the commands in the look-up table. If
BASIC found a match for the encountered
command at position 8 in the look-up
table it would go to the 8th address
pair in the dispatch table (lo byte-hi
byte form, naturally) add 1 to the lo
byte and branch to that address. If
BASIC doesn’t find a match, program
execution cannot continue so BASIC
branches to an error handling routine
and kicks out those error codes that we
all dearly love. The above explanation
is greatly simplified but with this
information we will be able to remove
the LET command from the look-up table
and insert out SCL command and place the
proper address to service the SCL in the
dispatch table.

On disk based machines running under
0865D V3.2, the look-up table is located
at $0284 and the dispatch table is
located at $0200. If you have never seen
@ look-up table, take a minute to look
at it. Boot the Extended Monitor, call
Track 2 into memory starting at %4200
(!CA 4200=02,1). Disassemble the code
starting at #4284 (@4284). =Shift P).
The EM will display the Hex value of-
that memory location. Enter Shift 2. The
EM will print the contents of %4284 as
an ABCII character. Hit the line fead
and the EM will display the next memory
location. Enter Shift 2 again. If vyou

continue on in this fashion that bunch
of junk will start to make sense because
BASIC’s look-up table for commands will
start scrolling up the screen. END is
firat, FOR is second, . and so on. LET
will be the 8th command on the list. The
address for the routine that services
the LET command will be the Bth address
pair in the dispatch table. When BASIC
encounters the LET command it will
branch to $09a4.

If you noticed that the ASCII value
of the last letter of every command does
not match the true ASBCII value of that
letter you may be puzzled. Bit 7 of the
ASCII value of the last letter of every
BASIC command is set. All basic has to
do is count the number of times Bit 7 is
set and it always knows where it is at
in the look-up table.

The speed modifications incorporated
into the program are not my own. The
original idea and program came from Mr.
John A. Sauter of the University of
Michigan. His article appears in the May
1981 issue of BYTE magazine. In his
article, Mr. Sauter describes the bugs
in O8I BASIC’s addition, subtraction and
multiplication routines and he submits
an article to fix them. I included his
fix in my program because we need a
place to stash ouwr code for the screen
clear. By tightening up the code in the

i REM————BASIC SPEED ENHANCER———-

290 REM———BASIC SCREEN CLEAR———

36 REM————KENNETH D. BOOTH-———

46 REM———8735 FOXCROFT LOOP——-

58 REM-———BOSQUE FARMS, NEW MEXICO-——-—
68 REM———565 869-3945

arithmetic routines, Sauter gives us
enough room for our screen clear without
using any free RAM. A big TALLY-HO to
Mr. Bauter for an excellent
article--read it for all the details on
the speed up.

Please refer to the BASIC program
listing. Line 100 calls Track 4 off of
disk and into memory so we can modify
it. Lines 200-2460 POKE in the speed
fixes along with our code for the screen
clear. Line 300 modifies a branch
instruction because of the revised code.
Lines 400-420 POKE in more raevised code
for the speed fix. Line 500 saves the
modified code out to disk. Line 400
calls Track 02 off of disk and into
memory #0 we can modify BASIC's look-up
and dispatch tables. Lines 6&10-630
modify these tables. The LET command is
removed from the look—uptnbln and 8CL is
inserted in its place making sure that
BIT 7 of the ASCII value of the letter L
is set. The address for the routine
that services LET is removed and the
address of our screen clear is inserted
It starts at #1862, Line 700 saves the
modified code back to disk.

The program as submitted functions as
advertised but it would be a good idea
to have a back-up operating system
available before you run it. One mistake
in a DATA statement will crash a disk
and make it useless unless you have a
back-up or facilities for copying.

99 REM——CALL TK 4 INTO MEMORY SO IT CAN BE MODIFIED

95 REM——-$ 42060=169846 dec.
1968 DISK!™"CA 4208=04,1"
156 REM—NOW POKE IN CORRECTED CODE

168 REM——CORRECTIONS ARE AT $4854 THRU $4884
206 FORX=18516T018564: READY: POKEX, Y: NEXT
216 DATA 118,2,118,3,118,4, 194, 185, 200

226 DATA 208,232,24,96,234,162,216,169

236 DATA 208, 133,254, 1460,0, 132,253, 169

248 DATA 32,145, 253,266, 208,251, 230, 254

256 DATA 228,254,208, 245, 96,234,234, 234

268 DATA 234,234,234,234,234,234,234,234

286 REM—CORRECT BRANCH AT $4846 TO REFLECT

Listing #1
Basic Program That Effects
The Changes Described in Text
and Listing #2 and Listing #3

299 REM-—OUR REVISED CODE. THIS IS AN IMPORTANT

295 REM-—POKE. SYSTEM WILL LOCK WITHOUT IT.

368 POKE18502, 24
354 REM——POKE IN MORE CORRECTED CODE

369 REM——CORRECTIONS ARE AT $4946 THRU $4954
498 FORX=18758T018772:READY:POKEX, Y: NEXT
416 DATA 162,115,162,116,162,117,162,118

428 DATA 182,189,152,74,268,214,96

456 REM——SAVE REVISED CODE OUT TO DISK

S89 DISK!"SA 64, 1=4203/8
559 REM—-CALL TK 62 INTO MEMORY SO WE

568 REM-—-CAN MODIFY BASIC’S LOOK-UFP AND

578 REM--DISPATCH TABLES TO USE OUR
586 REM-——SCREEN CLEAR ROUTINE.
699 DISK!"CA 4200=02,1"

619 FORX=17854T017856: READY: POKEX, Yz NEXT

6206 DATA 83,67,204
638 FPOKE16916,97:POKEL16911,24

648 REM—-—SAVE CORRECTED CODE BACK OUT TO DISK

794 DISK!"SA @2,1=42089/8

YZeTs
ads
U

vis
£L%

SU0I3}Iaau0)
4834y puer auojag
apo] jo burjsin

c# bBurjzsiq
dON vl 9861 Siy 29
“ YZ46TS INA tysa
£ Y MST vt
- YAL 86
: ——~(Jd%$ Y1S aass
: adgs vM0 adacs
: ags ¥S1 gd9v
. 28s# va B86Y
: JL6T$ 204 Zpos
: GO VA B66Y
b —=9/% YIS 9/58
: QLS YN0 LGP
. QL% HST 9L9p
. P8%# YA @86Y
. BL6T$ 204 Z006
: > 3@%# Yd BOLY
: —=GC/% YIS S/58
: S/$ YN0 S/GH
: S/% S S/9%
: g8s# va oB6Y
: v261% D0g 2006
. ->08%# YA BoLY
. F>t/% vis 4S8
vi$ YMO /S0
dON ¥3 GgeT L% HST vi9v
SiM 99 vS6T 28s# va 286Y
3N 9aed zZsset 8S61$ 204 Zoos
¥ST Yv IS61 “>Bas# va BBLY
YAL B6 @S6T £4% YIS £4S8
HO0M @899 IpsT~—" £4% YN0 $LSH
HOM 9499 OJboF—-— | £4% HST £L9%
HOM S99 uUpeTe— o8%# YAl @8LY
HOM v/(99 Brer<Ss—— Iv6Ts 208 Zese
HOH €499 9b&F # va’ BPLY
3A0D M3IN 3002 ao

867
86T
£86T
Z86T
2861
367
JLET
ULbT
BL6T
QLAT
vi6ed
CLET
&L67
3967
961
UeT
8961
96T
6Tt
96T
96T
JS6T
JS6T
vsaeT
B8S61T
PS6T
vSer
ZGaT
PS6T
Ivet
6T
Tv6T
8véer
6T

dON

40N

dON

4ON

40N

dON

dON

dON

dON

dON

dON

SiM

3981$ 3N

34% X4

3d4% ONI

39871T$ 3N

ANI

Af(ads) vis

SZeH 9d

ads AlS

oos# Ad

3d4% YIS

oas# val

sds# xal

dON

Siy

2710

L¥BT$ 3N

ANI

¥ MOM

vd

X ‘vBs HOM

X ‘£o% MHOYH

X ‘zZas HOY

8tv$ LId

X‘19% VIS

X“16% YHO

X“19% ¥ST

o8s# ANY

X“19% va

YHd

4581¢ S2d
.

2862
1854

819d

SU0T3}D33440)

4334y pue 8403ag
apo) jo burjisig

z# buryst

88T
£881
28871
1887
2881
4/87
3487
assrt
487
H/81
v.87
6481
/87T

- ———

LvB1$

o8%#
288T1$

S481
£481
1487
a.81
39871
981
vost
8981
2981
787
981
1987
2981
4587
aser

as81 _ ,
95871 |

NMOXwWwz 0JwWwgx

L e

vset _
as8r

X ‘vo%
X ‘vos
X ‘vo%

BEs#
rA4-3¢ 3

OO #
X ‘CO%
X‘cos
X‘cos
oBSH#
9981s
—oos 4
X ‘2o
X ‘Zo%
X*Zo%
PEs#

9581 _
vSe1———
zs8t
2581
El'L:)
avel
LT
aver
LB
svar

3A0J M3N

UcBIs
%
8vs
X‘10%
X“10%
X‘10%
Pes#
X*10%

ﬁlllllllllnmmqﬂ

S1y
210
3aNd
ANI
vH0
204
d7d
HST
dHd
vd
v1is
Y0
871
van
204
va
vis
vH0
ST
van
- |
9a
visS
YN0
ST
van
204
va
114
vis
vH0
ST
aNy
va
YUHd
s34

14=1=0¢
£88T7
1887
28871
/81
a8t
581
vi8T
6&L81
B84BT
.81
viB81
.81
GL8T
39871
29871
U8t
8981
9981
7981
o981
29871
3581
aJs8rt
vs8Tt

9581
ve8T
25871
2581
Irsr
aver
UvBl
8¢8I
Lv8T
SvB8rt

COMPRESSER
by James B. Perkins

COMPRESSER is & program, written in
Basic, to allow more efficient use of
valuable mini-floppy storage space.

I have found that, after only three
months as a disk user, I've acquired
twenty or 8o partially filled
mini-floppies with one or two track gaps
scattered throughout due to file
deletions. Usually, I can find room
among the good files for a short program
I happen to be working on but,
eventually, a new floppy has to be
initialized to accomodate a larger
file.

COMPRESSER will elminate all of these
unused track gaps by copying all of the
named files in the Directory down to
consecutive tracks starting at Track 1.
The entries in the Directory are altered
to reflectthe new locations of your
files. If there are no gaps, then no
effective action is taken as the program
runs to completion.

A word of caution here! If you have
saved by track number that are not named
entries in the directory, they may be
overwritten during the process.

While the program is written to take
advantage of the extensions to Basic
under 0845DV3.E, there are some changes
noted later on that could allow it’'s use
under earlier versions.

I have used screen memory at D200
thru #D3FF as a buffer for the directory
partly, in an effort to save workspace
memory but, also because its a lot more
fun to watch the track number being
shuffled during execution than to stare
at a static screen display. (You ought
to see how I celebrate the 4th of
July.)

Even though the program does not
formally open or close disk files, it
does require one buffer (Device #4) be
provided when the program is typed in,
as this area is used as a buffer by the
CALL and SAVE commands. If you wish to
eliminate this buffer from the program
to save a track in the program file,
then COMPRESBSER can be modified by
pokeing to 133 and 134 to provide a
headspace buffer at the end of BASIC
workspace memory. Lines 110 and 130
should alsoc be changed to use the
address of this new buffer.

Line 400 thru 420 are the
instructional messages.

Lines 530 thru 620 establish the size
requirements of Array DY%Z, needed to
hold the valid Directory entries and to
load those entries into the array.

Lines 20 thru 446 are a subroutine to
sort the entries by track number for
program use only. The order of entries
in the Directory will be unchanged after
program execution.

Lines 640 thru 730 are the working
meat of the program. This section
locates unused tracks and calls the
subroutine at 100 to copy higher tracks
down. It also updates the Directory
buffer as it goes.

Lines 731 thru the end write the
Directory buffer back to track 12 and
terminate the program.

The TRAP commands at Lines 100 and
160 are necessary to accomodate the
possibility of a multi-sector track such
as are encountered when saving machine
language object programs or as used in
the Directory itself.

Speaking of the Directory, if you use
COMPRESSER on a data disk thalhas unused
tracks below the Directory, the
Directory will be moved right along with
evarything else, thus rendering all of
vyour fiels inaccessable. Nice huh? While
I’ve made no provision to protect the
Directory, a line of coding at Line &55
such as: ¢
655 IF DYZ(Y,1)=12 THEN NT=13:60TO730
Should do the trick. Siffce I am still
the humble owner of a single disk
system, I like to keep the whole
operating system on each floppy and this
condition has not effected me.

Back to the Trap commands, if your
files are entirely in Basic, they are
always whole track multiples and, as
such you won’t need to provision for
multi-sector copying. You could, '
therefore, remove those commands and
move your Directory buffer off the
screen and then delete all references to
V3.3 Extended print commands such as
"PRINT! (to enable operation of
COMPRESSER under V3.2.

The reason that Line 160 contains a
B0TO700 instead of a RETURN is that use
of the Trap command seems to clear the
stack of all FOR/NEXT loops and RETURNS
from subroutine. Nasty business!

The peeks in Line 120 yield the
sector number and number‘of pages in
that sector that the DISK!"CALL" picked
out of the sector headg* on the disk.
9821 is also useful as it holds the
track number read from the header. These
are listed in the PEEK/POKE list
included in the V3.3 documentation but
the description of them is vague. Its
surprising the things you can find using
the Extended Monitors string search
features and a few lucky guesses.

One further disclaimer, while I
haven’t lost any files yet, you might
want to make back—-up copies of your
irreplaceable files before running
COMPRESSER until your confidence is
established.

1 REM DISK COMPRESSER

2 REM JAMES B. PERKINS

3 REM 7267 FAIRWOOD DR.

4 REM INDPLS IN 46256

5 REM 317-843-3983S

6 REM 139 JULY 82 s

18 GOTO488

28 DIMSF%(NE),S%(NE)

22 7=1:G0OSUBZ8: GOSUB48: GOSUB38

24 Z=2:G05UBZ8:GOSUB38

26 Z=3:G0OS5UBZ8:G0OSUB3A

28 FORX=1TONE:SFX%(X)=DYX(X,Z):NEXTX:RET
URN

38 FORX=1TONE:DYX%(X,Z)=SFX(S%(X)):NEXTX
:RETURN

4B FORX=1TONE:P=8:FORY=1TONE

42 IFSF%(X)>SF%(Y)THENP=P+1

44 IFSF%(X)=SF%(Y JANDX=>YTHENP=P+1

46 NEXTY:S%(P)=X:NEXTX:RETURN

198 S=1:WAIT1E@

185 S$=STR$(S):S$=RIGHTS(S$,LENC(SSE)-1)
118 DISK!"CA 3ATE="+RT$+", “+S$

128 P=PEEK(9823): S=PEEK(39822)

125 P$=STRS(P):P$=RIGHT$(P$,LEN(P$)-1)
138 DISK!"SA “+NT$+", “+58+"=3A7E/"+P$
14@ IFP<7?THENS=S+1:GOT0185

158 RETURN

168 WAITE:PRINT!(18):G0TO700

499 PRINT!(28):PRINT:PRINT:PRINT:PRINT"
COMPRESSER™

4@2 PRINT:PRINT:PRINT" WARNING!!":PRI
NT:PRINT* FILES NOT IN DIRECTORY"

484 PRINT" MAY BE LOST":PRINT:PRINT

496 FORT=1TOS5@8:NEXT

488 PRINT" INSERT MINIFLOPPY TO®:PRINT®
BE COMPRESSED INTO"

418 PRINT® DRIVE A":POKE2888,0:POKES?Z22
.8

412 INPUT" PRESS <CR>";G$

42@ PRINT!(28)

518 DEFFNACX)I=X-INT(X/16)%16+INT(X/16)%
18

528 DEFFNB(X)=X-INT(X/1B)%1B+INT(X/1@)%
16

538 DO=5376@:DT=D0+585

548 DISK!*CA D2@8B=12, 1" :DISK!"CA D38@=1
2,2" :NE=8

558 FORY=DOTODTSTEPS: IFPEEK(Y+7)< >@THEN
NE=NE+1

568 NEXTY:DIMDY%(NE,3):DP=1:PRINT!(18)
578 FORY=BTOS@4STEPS

588 IFPEEK(Y+DO+7)=BTHENG2@

598 DY%(DP, 1 Y=PEEK(Y+DO+6): DY%(DP, 2)=PE
EK(Y+D0O+7)

608 DY%(DP,3)=Y

618 FORX=1T02:DY%(DP, X)=FNA(DY%(DP,X)):
NEXTX

615 DP=DP+1

628 NEXTY

622 PRINT" SORTING®;!(18)

638 GOSUB2@:NT=1

548 Y=1

658 IFDY%(Y, 1)=¢(NTTHENNT=DY%(Y,Z2)+1:GOT
0738

668 FT=NT:RT%=DY%(Y,1)

678 NT$=STRS$(NT):NT$=RIGHTS(NTS,LEN(NTS
-1

688 RT$=STR$(RT%):RT$=RIGHTS(RTS, _EN(RT
$)-1)

699 GOSUB10@

708 NT=NT+1:RT%=RT%+1: IFRT%{=DY%(Y,2)TH
ENG7D

71@ LT=NT-1:DP=DY%(Y,3):FT=FNB(FT):LT=F
NB(LT) .

728 POKEDO+DP+8,FT:POKEDO+DP+7,LT

738 Y=Y+1:IFY<NE+1THENE5@

731 DISK!"SA 12, 1=029@/1":DISK!"SA 12,2
=D3pa-1

748 PRINT!(28):PRINT:PRINT® DISK COMPRE
SS":PRINT" COMPLETE"

758 PRINT™ NEXT AUAILABLE":PRINT" TRACK
1S";NT:PRINT: PRINT

768 INPUT" <CR> TO CONTINUE";G$

778 POKE2888, 27:POKES722, 27: RUN"BEXECS "

JOHN SEYBOLD, FULLERTON,CALIFORNIA

I want to thank Mr. Price for that
wonderful screen print program that he
had in the April issue of the Journal.
It works very nicely for printing plots
that vyou have on the screen, provided
that you use characters that your
printer will recognize of course. Like
most of Journal readers though, I seldom
leave well enough alone. Below is a
modified listing of Mr. Price’s
program.

The most significant modification
that I made was to adjust it to print 26
instead of 21 1lines. This enables the
program to print any headings or
subtitles that vyou might have. I then
went on to put multiple statements per
line to reduce memory use. As can be
seen from the sample run, you can now
get the entire visible screen printed.
The final change that I made was to
reverse the logic in line S0, for
deciding when to stop reading the
screen, to save a few extra bytes by
eliminating one goto.

1 REM SCREEN PRINT JOHN PRICE KNOXVILLE
IA

2 REM PROGRAM SCANS VIDEO MEMORY
LOCATIONS THEN PRINTS

3 REM THOSE CONTENTS TO A LINE PRINTER
4 REM REVISED BY JOHN 8 SEYBOLD
FULLERTON CA

S REM AARDVARK VOL I NO 1 PAGE 9

10 DIMS(24,26)1C=533811D=53405) X=03 Y=1
20 FORA=CTODi X=X+1

30 Z=PEEK(A)18(X,Y)=Z1 IFX=24B0T0OS0

40 NEXTA

S0
Y=Y+13C=C+32; D=D+321 X=0: IFD<5417460T020
60 BAVE1FORY=1TO26:1FORX=1T0O24

70 PRINTCHR®(S(X,Y)) 31 IFX=24THENPRINT
80 NEXTXi1NEXTYIPOKES17,01END

FORI=0TO201?TAB(I) j IsNEXT1RUN
0

DON VANSYCKEL, MIDDLEBURY, VERMONT

I am running CBP with 0845D V3.2 and
have been experiencing a peculiar
problem. One program which I wrote uses
several arrays dimensioned at 58.
Occasionally, the sytem would get lost
and forget where the arrays were
located. In fact, a print of element #1
in the BASIC immediate mode would return
@ bad subscript (BS) error. The system
must have found the array name or I
would think it would have generated the
array again and found the element.

Time passes and I made a few minor
changes to the program. Now,
occasionally the last defined arithmetic
variable will get clobbered. Some of the
arrays are integer arrays but most are
string arrays. I’ll also mention here
that at no time have I ever gotten an
out of memory (OM) error. Also, the
glitch happens at various points in
loadin the arrays. I might get half the
data in and the system will glitch. I"1ll
then restart the BASIC program and the
whole thing runs fine. The only
difference in the two runs of the
program is in data entry. As each block
of data is entered it is displayed and
corrections may be made to individual
items. Between the two runs the number
of and/or size of intermediate strings
was different.

Time passes and I got the idea to
delete some BASIC code, utility package,
to give the variables more room. Since
that time I have not experienced the
glitch again. The problem is that I woud
like to add some more code to the
program but have no idea how much is
safe to add before the system will
glitch.

I have calculated that variable
memory is large enough to easily hold
all the variables. Also, extensive
memory diagnostice have been run several
times. However, under some conditions I
think the garbage collection routine
writes a string over the last arithmetic
variable and then one of two things
happens.

1. The arithmetic variable is read and
has & bad value stored in it.

2. The arithmetic variables has a new
value written into it which overwrites
the string header (which should not be
there); then, when the string is called
the system can't find the string.

Possibly one of your readers has
solved this problem or can define it
better so that it can be avoided.
Hopefully someone has patches to BASBIC
which they’ll share.

WAYNE MC RICE, SAN FRANCISCO CA

I recently added the 8K memory board
from AARDVARK to my CiP. Presently, I'm
using it without the PIA and I've got 4K
on the board so far.

I’ve come to realize, as I expand the

memory, the importance of being able to
locate a bad 2114 should the need arise.
The program for testing smemory that’s
included in the data sheets for the
board is, as stated, very:reliable. But,
also as stated, it is very slow.

Now if vyou're as addicted as I am to
punching away at the keyboard and
sgtaring bleary eyed at the monitor for
hours on end, then havimg the machine
tied up for five and six ' hours to run a
test is akin to going cold turkey.

Well, wait no more. Here's a program
that’s just as efficient but a little
leas time consuming. The testing is done
at the machine code level, and only
returnse to BABIC if there’s a bad memory
location or the testing is completed. As
written, it's set up to test as much
mamory as possible. So it starts at
$0400, wslightly behind the BASIC
program, and runs to the end of RAM. In
my case that’'s #2FFF. But I assumed that
most would have their boards fully
populated if they have as much patience
as me, but a few more dollars. So it’s
written to test to the end of
16K ($3FFF), and I’ve included the
necessary changes for 12K, 8K and 4K.

When I run it in my machine from
#0400 to $2FFF, it takes about three and
1/2 minutes with no exits for errors.
8o, it's over with before I start
getting the shakes.

THE WAY IT WORKS

t
The object is to put a byte of data in
@each memory address in RAM then check
that address to see if it’s acutally
holding the data just stored there.

In the first half of the test,
Register "A" is loaded with the data
then stored at the first memory address.
The data just stored is then immediately
compared to the data in "A". If they are
the same, the memory address is
incremented and the same thing is
repeated at the new address. If they
aren’t the same, the program first
changes the Lo Byte of the User pointer
at $000B then exits to BABIC to print,
in decimal, where the error is, what
number was poked into the address, and
what number was returned. Then it jumps
back into the program via the User
pointer, resets "A" to what it was,
increments the memory address and
continues. The "X" and "Y" registers are
used to test for the end of RAM. Thay
are also reset if the program exits for
an error call. After each address has
been checked with this byte of data, the
data in "A" is incremented, the address
reset to the beginning, and the entire
process is repeated soc that every
location is tested with data from %00 to
$FF.

The second half of the program is
only slightly different. Register the
addresses. After all locations are
loaded, they are checked, one after the
other, to see if they are still the same
as "A". If so, the same happens as
before. The User pointer is changed, the
program exits to BASIC te tattle, then
returns and continues. Whén the Hi Byte
of the memory address being tested
matches the data held in "X", the

testing is complete. This is done for
both halves of the program. When the
match is made in the second half, the
program terminates. I imagine about five
minutes for 16K if it doesn’t stop for
errors.

If, for some reason, the program is
run again immediately, certain addresses
must be reset by hand by going into the
Monitor. %002A, 2D, 7& and B89, which
hold the Hi byte of the address being
tested, will now contain %40 in the case
of 16K. They have to be reset to $04. If
there were any exits for errors, the Lo
Byte of the User pointer will alsoc need
to be changed back to $22. 80, with a
maximum of five changes, it's ready to
go again.

There are two BASIC programs here.
One is the DATA program and the other is
the MAIN program.

The first step is to type in the DATA
program and RUN it. If you want to SAVE
it on tape, type it in and SAVE it
before RUNning. It has a NEW command in

line 25, and after it runs, the data is
left in page 2 but the BASIC program is
cleared out. The DATA program also sets

the User pointer at $000R, C.

The second step is to type in the
MAIN BASIC program. When it’s in just
RUN it.

The other method for loading the
program, and I believe the easiest, is
to first put in the MAIN program, then
go into the Monitor to $0222, and use
the disassembly listing to load the
data. Be sure to put %22 into $000B and
%02 into $000C. Then Warm start and
RUN.

If you want to SAVE the disassembly
on tape and load it directly into the
monitor for use and you don't know how
to do this yet, get a copy of THE FIRST
BOOK OF 08I. There's a lot of good
stuff in there. It’'s worth far more than
it’s price.

0.K. 8o maybe you don’'t have 1&K
@ither. With a few quick additons or
changes the program can be adjusted to
whatever you like.

These are the changes for 12K, 8K, and
4Kz
To the BASIC DATA program add line 22.

(FOR 12K)
22 POKES47,481P0OKES1I, 481 POKES23S, 481
POKE&99, 48

(FOR B8K)
22 POKES47,32:1POKE&13,321...ETC.

(FOR 4K)
22 POKES47,161...ETC.

In the
20 & 35

MAIN BASIC program change linaes

(FOR 12K)
20 IFPEEK(A)=4B8THEN...ETC.
35 IFPEEK(A)=48THEN...ETC.

(FOR 8K)
20 IFPEEK(A)=32THEN...ETC.
35 " "=mI2M -« «ETC.
(FOR 4K)

20 IFPEEK(A)=16...
IS5 00 owow "mih, ..

10

To the
these:

DISASSEMBLY LISTING change

ADDRESS 12K 8K 4K

$0223 30 20 10
#0265 30 20 10
$026F 30 20 10
#02BB 30 20 10

If you’'ve never had the misfortune of
getting a bum 2114, that’s great! On the

other hand, if like me, you have, then
you probably are aware of the agony of
trying to isolate it. And if you were
really unfortunate, and put 2 bad chips
on your board at the same
time.....Wellllll.cceevvnnna

Last, but of course not least, I'd
like to express my appreciation to the
people at AARDVARK for their efforts to

shed some light on the mysteries of 0SI.
Without your work I fear there would be
a lot more dark corners than there are.
I've learned more from the listings
to your games and the data sheets and
the Journal than I could have possibly

have learned from any other source. I
have to mention the FIRST BOOK OF 08I
again here, also. For me, it’s been a

real treasure.
BASIC DATA PROGRAM

5 REM 16K MEMORY TEST DATA
10 FORX=544 TO 707

15 READA1 POKEX, At NEXT

20 POKE11,341POKE12,2

25 PRINT"READY"1NEW

30 DATA162,68,160,0,1469,0,141,0,4,205,
0,4,208

32 DATA47,238,41,2,238,44,2,204,41,2

35 DATA240,3,76,40,2,238,42, 2,238, 45, 2,
236,42,2,240,3,76,40, 2,238, 39,

40 DATA204,39,2,240,26,169,4,141,42,2,
141,45,2,76,38,2,1462,100,134,11

45 DATA%6, 162,64,160,0,173,39,2,76,48,2,
162,64,160,0,169,0,141,0,4,23

50 DATA117,2,204,117,2,208, 245,238,118,
2,236,118, 2,208, 237,20%5,0, 4, 20

55 DATA41,238,136,2,204,136,2,208, 243,
238,137,2,236,137, 2,208, 235, 238

60 DATA115,2,204,11%5,2,240,21,140,117,2,
140,136,2,169,4,141,118,2, 141

&5 DATA137,2,76,114,2,162,186,134,11,96
70 DATA162,64,160,0,173,115,2,76,140,2

MAIN BASIC PROGRAM

After LOADing and RUNning the data
program, LOAD and RUN this BASIC
programi

1 REM 146K MEMORY TEST

S D=256

10 X=USR (X)

15 A=554:B=553)C=551

20 IFPEEK (A)=&4THEN3O

25 PRINT"ERROR AT "PEEK(A) XxD+PEEK(B)1
G08UB45:60TO10

30 AmL49)B=6481 Cmb27

35 IFPEEK(A)=464THENPRINT"DONE": STOP

40 PRINT"STATIC ERROR AT "PEEK(A) XD+
PEEK (B) 1 GOSUB45: B0T010

435 PRINT"POKED"PEEK(C)" GOT "PEEK (PEEK
(A) XD+PEEK (B)) s RETURN

DISADSEMBLY LIS
MEMORY TE

0222 A2 4O * 024F CC 27 02
0224 A0 00 0252 70 1A
0226 A9 00 0254 A9 04
0228 8D 00 O4 0256 8D 2A 02
022B CD 00 O4 0259 80 2D 02
022E DO 2F 025C 4C 26 02
0230 EE 29 02 O025F A2 Ok
0233 EE 2C 02 0261 86 OB
0236 CC 29 02 0263 60

0239 70 03 0264 A2 Lo *
023B 4C 28 02 0266 A0 00
023E EE 24 02 0268 AD 27 02
0241 EE 2D 02 026B 4C 30 02
0244 EC 2A 02 O026E A2 40 *
0247 FO 03 0270 A0 00
0249 4C 28 02 0272 A9 00
024C EE 27 02 0274 8D 00 o4

USING STRUCTURED PROGRAMMING TECHNIQUES
by Larry Ellenbecker

I have enjoyed vyour Journal very much
over the past 2 vyears. In that time I
have not seen any articles dealing with
two very important areas of programming:
1) program documentation, and 2) using
structured programming in developing
BABIC programs. BSince you mentioned
re-establishing the Beginner Corner I
felt this might be a good time to submit
an article.

A common excuse among programmers is
that they never have time to write user
documentation for their programs.
Particularly in a business environment
and even for the serious hobbiest
documentation of programs is vary
important. A business is concerned with
retaining control over the programs it
has paid to develop and depends upon to

conduct its normal activities. Also for
businesses, there is always the
potential for staff turnover to

consider. The personal computerist

should be concerned with program
documentation for other reasons. As
computerist develops his or her

programming skills, documentatio of
techniques that have been mastered can
be invaluable when it comes time to
program more sophisticated applications.
Through the use of documentation, you
can build your own reference library of
computer programming techniques. By now
the reader is saying "that sounds good,
but documentation is a time consuming

process”". My answer to this is "it

doesn’t have to be that way if you use
structured programming techniques".

the

0277
027A
027D
027%
0282
0285
0287
028A
028C
028F
0292
0294
0297
0294
029C
029F
02A2

11

TING for

ST
EE 75 02 02A4 8C 75 02
CC 75 02 02A7 8C 88 02
DO F5 02AA A9 04
EE 76 02 02AC 8D 76 02
EC 76 02 02AF 8D 89 02
DO ED 02B2 4C 72 02
CD 00 04 02B5 A2 BA
DO 29 02B7 86 0B
EE 88 02 02B9 60
cc 88 02 02BA A2 40 =
DO F3 02BC A0 00
EE 89 02 O2BE AD 73 02
EC 89 02 02C1 4C 8C 02
DO EB
EE 73 02 000B 22
CC 73 02 000C 02
FO 15 *¥Change points for

other than 16K.

I recently had the opportunity to
enroll in a COBOL programming course.
During the entire course the instructor
continually stressed the importance of
structured programming in writing
programs that could be easily
maintained. Structured programming uses
a top-down approach in programming. A
modular structure chart is initially
prepared which simply outlines the major

processes that the program must take
into account in order to accomplish a
specific task. From the modular

structure chart, a flow chart is
developed which details each process as
a separate operational portion of the
program. The flow charted modules can
then be used to write the source code
program and go through the debugging
process.

The instructor of my COBOL course
imposed two interesting restrictions on
us as students in his course. First, we
were not allowed to use the COBOL
command GO. TO to branch from one
operational process to another. We could
only use GO TO to exit ocut of a
processing loop. 8Second, we were
required to use the PERFORM command to
execute the various modular processes in
our program. In BASIC this would be like
using a GOSUB command. Well, to make a
long story short, my COBOL instructor
convinced me that structured programming
is a valuable technique regardless of
programming language. GOTO statements in
BASIC programs are among the most
overused and most sloppily used
statements available to a programmer.
Indiscriminate use of GOTO makes
documentation writing very difficult and
debugging next to impessible. I'm not
saying that programmers should quit

using GOTO’s, but rather that GOSUB's
and GOTO's can be used more effectively
if you disipline yourself to think about
your programs from a structured point of
view. :

To demonstrate what I mean, I will go
through an application programming
process using structured programming
concepts. The application we will be
programming will be to calculate the
coefficient of linear correlation.

Modul ar Structure Charts

In this phase of developing a
program, we are concerned with
conceptualizing the programming task. In
their simplest form all processes can be
depicted by the Input-Output Model.

* [Tweur [Frocessine [ourrur

However, if we really begin to think
about a programming application we can
usually break it down into component
parts or processes. Our thoughts can be
schematically charted as shown in the
modul ar structure chart below:

CORRELATION PROGRAM

(1)[Set Up File Parametersl

(2) | Printer Report HeadgEJ

(3)[Read Data Sets X&Y]

(4) | Calculate Coefficient
of Linear Correlation

|

(5) Print-Out Result l

Once we have drawn this chart you may
asky; what does it tell us and how does
it help to develop a flow chart and
ultimtely a program. This will become
obvious as we review each component of
our sample structure chart. Item (1),
Set Up File Parameters) is used for all
initializing operations. For example, if
we are dealing with arrays and matrixes,
this is the part of the program where
they are dimensioned. Counter values are
also set at this point in the program.
Item (2), Print Report Headerj; here we

might be concerned with printing a hard.

copy of our calculation and would like
to provide an appropriate title for the
output. Item (3), Read Dataj as in any
data processing we must read or input
the data from somewhere. Item (4),
Calculating Correlation Coefficients) is
a mathematical process and therefore
relies on a standard formula. Item (5),
Print-Out as in any process we will
output some kind of results.

12

Flow Charting

At this point, depending upon the
complexity of the operations in each of
these modular levels, we may flow chart
some, all, or none of the defined
modules. Because of space constraints in
this article I will not show a flow
chart for this program example.
However, the reader should be aware that
Items I and 4 are complex enough to
warrant flow charting depending upon the
programming abilities of the individual
programmer.

Structured Programs

I would now direct the readers
attention to the program listing for the
"CORREL" program. This is an example of
a structured BASIC program. Lines 10-90
provide the user with several items of
useful information; such as, buffers
required, system requirements and
formula source.

Lines 100-190 constitute the
structure for the operation of the
entire program, hence the title "CONTROL
MODULE". The Control Module also
provides a potential user with complete
operational documentation for the
program logic because it specifically
directs the user to the source code
lines for each operation. Note the use
of the GOSUB and GOTO statements.
GOSUB’® are used to perform all main
modular activities while GOTO statements
are used within modules to alter
operations upon meeting the conditional
requirements of a control break
statement (see example of conditional IF
statement in line 1020).

In addition to the documentation that
is provided in the Control module, it is
easy to document specific operations by
referring to a particular module. For
example, in the "Read Data Module"
statement lines 1200 through 1280, lines
1230 and 1260 have a particular
operation performed on the (X data set)
and (Y data set) that are input for
processing. The data that I processed
with this program had numberic values
with two decimal places for the (X data
set) and one decimal place for the (Y
data set). To save disk storage space,
the data was entered without the decimal
points. If I came back to use this
program six months from now, I know I
wouldn’t remember that these lines were
set up that way. However, if I document
that fact as an element of the "Read
Data Module", I have a refaerence to
consult at some later date before
program execution. A second example of
where simple documentation can be
helpful is in the "Print Report Header
Module", lines 710 and 740, The REM
statements are used to show where the
Printer could be turned on and off. If
you want a hard copy of your
calculation, simply insert 710
POKEB994,3 and 740 POKEB994,2. As you
can see, useful documentation can be as
simple a8 a single written statement

directed to a specific program line
number under a specific modular heading.
The documentation page can be attached
to the program source code and your
structured program is complete.

In conclusion, I think this
o cussion about structured programming
and documentation can serve personal and
business computerists well if they
remember some of the important steps in
the process.

Structured Programming Techniques

1. Conceptualize vyour programming task
arnd draw up a modular structure chart

that includes all the important
operational components.
2. Use flow charts to aid in defining

difficult operations withing each
modul ar component.

3. Discipline yourself in using GOSUB’s
and GOTO statements to maximize vyour
control over programming processes.

4., Use the "Control Module" to document
overall program logicy and then document
specific operations by referring to the

IOREH BUFFER 6 & 7 ATTACHED
0 REM

30 REM FILE NMAME | CORREL
40 REM BRITTEN BY | LARRY L. ELLENBECKFR
30 REM PGN DESC. | COEFFICIENT OF LINEAR CORRELATION PROCRAN
o1 REN FORMULA SOURCE-(ADVANCED BASIC) BY

o2 REN JANES 5. COAN

REM SYSTEM + OSI CAPNF (nm. snm DISK IRIVE REQUIRED)
70 REH WT PGHS 'DgIszE DATA ENTRY PROGRAM

Al
SET UP PARAMETERS/DIMENSIONS
PRINT REPORT HEADER
OPEN DISK FILE BUFFER &
‘REN OPEN DISK FILE BUFFER 7
READ DATA
‘REN SUMMATION CALCULATED (XRY DATA SETS)

170 GOSUB 25001REM VARIANCES CALCULATED
3 IREN PRINT OUT COEFFICIENT OF LINEAR CORRELATION

Up PAX NS
510 FX’R-(INI%E(u)-cummmn (F le CORRELATION PCH"

I3

530 FOR 7=1 TO I5.PRINTINEXT
40 PRINT (PRINTIPRINTRETURN
K _ PRINT REPORT HEADER

710 POKE 89943
720 PRINTTAB(35)* THE COEFFICIENT OF LINEAR CORRELATION FOR DATA SETS X & Y*
730 PRINTIPRINT

740 POKE 899442
79 RElRN

1000 REM FILE BUFFER &
1010 READ Fli’PRINT PRI!T'(X) MTA SET BEING READ®
1020 IF F1$="END* THEM GOTO 170
30 DISK OPENisF14
40 RETURN

1100 REM OPEN DISK FILE BUFFER 7

1110 READ F24:PRINTIPRINT*(Y) DATh SET BEING READ®
1120 DISK OPENs7:F2¢

113’.) RETURN

4) REM
115’) DATA "COR D1"5"COR D3","COR D2°s"COR D&","COR D3",*COR D™
1150 DATA “COR D4"5COR DB"
1170 TATA "END®
1200 REM READ DATA
1210 INPUTH6,IVS
1220 TF IV$="END-FILE" THEN GOSUB 1000:€0TQ 1210
%330)I(X-WL(IUQ)’X# 0/100)
1250 IF TV6="END-FILE" THEN GOSUB 1100:G0TQ 1240
{"%) Y=URL(IVS)/1Q

=it
1280 RETURK
2000 REM SUMSATIONS CALCULATED FROM X AMB Y DATA SETS
”8}‘8 S=SHXEY1S1=514X182=824Y1T1= T1+Xt2'T2‘T2+"2

RETURN
2300 REM VARTANCES

ANCES CALCULATED
? “AL=SL/NIAZ=52/ N1 I-TW'RZ'UIN'VI'M(II.-AHZ)'MBZ-AZH)
oo NtS-Slt52 AL)

VARTANCES CALCIR ATED® IPRINT

LJuJ PR “Tt

2940 ETLRN

3000 R INT COEFFICIENT OF LINEAR CORRELATION
3010 FOR Z-l T0_35LPRINT INEXT

3020 POKE B994:3

3030 PRINTTABC40)*CORRELATION COEFFICIENT =

" iRIPRINT
3040 POKE 899442

3050 S=0»Sl=03§2=0.T1=0.T2=0

3060 RETURN

O

13

module name and appropriate program line
number .

The benefit you will receive for
efforts will be:s

your

1. A program that is easy to alter
Bhould you wnat to expand its
tapabilities. Other subroutines can be
bdded anywhere and their operation
controlled by its sequence in the
"Control Module" statements

. Access to a reference base of mini
programs (modules) that are already
debugged and which can easily be adopted
for use in other structured pragraml.

I have also included a copy of'n program
called "DATA E" for data chtry for
running the "CORREL" program. It is
another example of a structured program
which I hope will be adaptable for use
by other computerists.

BUFFER 6 ATTACHED
DATA E

W T
CLOSE-F ILE-HOD
HANUAL
180 IF FLAG=1 THEN FLAG=0:COTO 120
500 REM SET DIEENSINS
0 POKE 2893,28:POKE 2894511
5"0 IJIK X‘(16!25)15(5)
230 1=0:K=0 esi2
g§8 R OF tRE DATA MATRIX

1000 REN ~ FILE-DPEN-HOD
lgOS FMBI TO 35:PRINT INEXT
1020 PRINTIPRINT! INPUT"ENTER FILE NAME®iF$

1030 IF F$="END" GOTO 140
1040 DISK OPEMNs6sF$

1080 FOR X=1TOZ5:PRINT ;NEXT SRETURN e B
03?8 %«r'nm Wﬁmm {PRINT:PRINT <
202 o m 3 11 10 gs é
ot,o c-c+1 PRmc {INPUT'ENTER DATAS " §DS {PRINT:PRINT é =
2050 [f DBNI-FILE THEN GOT0 200 o~ w5 8 %
"3‘7’0 mé _ NoTe: EnTer S 5‘
gggoo ﬁrérm 'EN()-File"‘l"::Déxi* ggg g =
& =0} <
oEN ILE-40D DAt ENTRy Loop 2 AE 2
3010 DISK CLOSExs %E = 5
RETURN [Fist x ST
4000 REX HANUAL ~CONTROL 40D Egsgv— ==
4010 FOR X=1 TO 304 PRINT SNEXT FEu3"T
4020 TNPUT"OPEN NEXT FILE ¥ -am:k (YR)-"3Y$ Efo e
4030 IF Y$="Y" THEN Fw: = EEEEE D=
1338 ;I&?!}';‘? ERuElinls
5000 REX REVIEW & CORRECT-HOD £25238358
5010 PRINTS mn.mmmn‘m mm' FRPsS
5020 FIR I= 1 m 0 mmnmmm scr |

5030 FOR J=1

013
PRINT};' = TS LI TABLI2 N#123" = *5X8(1nJ+12)

5060 GOSUB 7000
5070 IF K=0 THEN ‘X090
3080 FOR#IT[K Y=5(§ IPRINTXS$(LsY)y .Wm"'

5090 FOR X=1_TO_303PRINT s NEXT }NEXT
6000 REH DATA-TO-DISK-NOD

10 FIR I=1 TO @

6020 FOR J=1 70 25

6030 PRINT#65X$(I5d)

5040 NEXT J

6050 NEXT I
6070 TES="END-FILE" }PRINT#As TES
g%lg FRGIQN; !;R%ST;%A&W T0 DISK FILE"5F$
000 REN ~LIST-NOD

IXSCTLY =CINEXT

ROY KELLY, N. HOLLYWOOD, CA To fill the buffer at 9600 buad

equivalent with vyour Ci18 ROM I found I
I just bough an MX-70 printer for $300, had to give all the commands in one line

after reading Dec. Aardvark Journal and as follows:
deciding I could:run it with my CiP. I F=&1440 3
cam@ up with the above modification of

Jeff Rae’s circuit) after reversing all 1f
the data lines because Epson’s manual
doesn’t say which is which, it now works

SAVE
POKEF, 31 POKEF, 163 LIST N—

you type LIST separately the C18 ROM
resets the 68350 back to its divide by 16

mode.
fine as shown below.
D7 —————DaTA 8
D6 ——+ 74LS175 p————>DATA 7
D5 ———————DATA 6
- 7 - _A m A
D)+]0 3] 8 9 DA.LA 5
5V <t GND Epson
C1P MX-7¢
) L — 16 1 8 ~.DATA & '
Do DATA
D1 718175 ~DaTh 3
DATA I
94

1/3 ' ——
LS1g ‘ ::::x)—es’bTMOBE

—<BUsy

$ 17K [>O_‘—

ground GND

ClP - MX-7¢ PARALLEL PRINTER INITERFACE
(see also Vcl.2 #5 0.6)

CLUTTER FOR 051 KERRY LOURASH, DECATUR, ILLINOIS
TP The following listing is & correction to
LEH EQL EL7 ! iy the article "CLUTTER for O0SI" which was
LINE EQll #263 o published in the Aardvark Journal Vol. 3
ST EOL £45 NO. 2 pages 12 and 13. A friend printed
PP Eqll 47 the listing and I discovered too late
E7p that one line of the program had
ORIE 229 disappeared. In a ML program, this
throws the whole program off; the line
LOF #3265 #5468 IF CZ2o4 cannot just be re-inserted - a whole new
STH =T SET STHRT, PUEE FOIHT assembly must be done.
STH PP
LOA #3003 #3207 IF C2o4
SZTH S5T+1
STH FPR+1
E BHE DECST ERAHCH ALHAYS
4
g H2FF CELIM L #EFF
2 REFF Cca LOY #$FF
4 ER Ci THE
= CE IHY
£ BDES5A2 LOR TEL.H
S5 OFEEF EBE ERRSE IF HULL. ERHSE LINE
= CHP 5T 3.Y COMPARE CHAR. TO SCREEM
0 BEL C1 LOOF IF H HMHTCH
F Lz THE
@ LOA TBEL.® GET HEXT TBL CHHR.
] BHE CZ LOOP IF <> 8 -
LOAR TeBL+1.s DOUBLE HULLT
BHE C& MO, HMEXT TEL EWTRY
FELIH oY #HLEM LIME LEMSTH OF SCREEH
LOR C5T .Y GET CHRR TO BE HOUED
THH SAUE CHARACTER 14
LOA #F

26 ERASE OLD CHRRACTER
STAR (S5Ta

i3
T

CPR LY

BFL FPELIM+2

] “HZEEE TEL

@ 3 OATA $3F

5] {515} OATA @

@ iE4B OATH F4F,$3k
@ fETs] OATH &

(5 40435354 ORTH #

A7 HEEE DATH A,E

a7 EMD

FEEXEEFLEFFEFLFFEEXREXEFHES
]

[3
e b= DECPP SEC
55 o Loe FF
A l:: 'm; 1 #LIHE
55 E FF
EL 5] QECET
34 FP+1
@
DECST SEE
sk LoE =7
5k SBEC #LIME
5 =T
DiOkME
ST+1
A OOHE LOR ST+l
CH CHF #2008
L B BUS CK
AgE: LOA
* 4UTROR HF
ERAZE Loy #LEH
LOR #3206
STH CET .Y
nEY
EPL ERASE+4
BMI DECST

RESTORE CHRRRCTER
FRINT AT MEW LOCATION

FOKE FOIMT UF 1 LIME

START UF 1 LIME

ST < FD0OGE IF DOME

POINT MESS. AT $H1GE
O HARM START

ERASE A LIME

LOOP IF MOT DOHE
GOTO DECST IF DOHE

DATR £28,F20,%28,%20,8

Hegh

Sk

UL F35, 857,554 “LISTY
i

ITI T
Le c1 =H23F CELIN =9259 DECST =8264
DONE ERASE =@817 L IME =8244 PP =0Q4T
= TBL
JIM WEIMER, FT. MORGAN, COLORADO VINCE BARBOUR, CINCINATTI, OHIO

Have you ever wanted a flag in program
that you could easily toggle (like a
toggle switch)? Here is a BASIC line
which will set the flag ON the first

time it is executed, OFF the second
time

etc.

10 LET X = -1 (set flag OFF)
00 X = X - 2%8GN(X) (toggles flag)

X alternates between -1 and 1 by merely
executing line S00.

KERRY LOURASH, DECATUR, ILLINOIS
CORRECTION TO BASIC EBLOCK DELETE
IN AUGUST VOL. 2 #3 JOURNAL PG. 14
I have now created a much faster
version

with error checking.
same user format. The only difference
is that the "DELETE® flag is now $64.
The only way you might get into trouble
with the routine (that I can see) is

to do an INPUT statement with the
output

to screen suppressed

It is exactly the

($64 set).

Here is a cleaner and perhaps better
odd or

way to determine if a number is
even than using the INT function.

ON (TSTNUM and 1)+1 GO TO GOSUR

EVEN ROUTINE 22222, 0DD ROUTINE 11111
All odd numbers have the low bit=1,
even the the low bit=0. The above
expression returns a O0+l=1 for even
numbers, a 1+1=2 for odd numbers.

This function can be used to test any
handling with the
in the May 1981
IF AF
where Bl though B8 are
the first through

bit and can be used
"Secret Rasic Functions"
catalog. It is done like this:
AND B1/B8 THEN
equal to 2 raised to
eighth power.

The
bit is on.
using the OR
EBE8.

set
through

The bit can'be
function and Bl

Each switch takes one bit rather than
More space can be

one byte or more.
saved by using strings: and
functions or by using PEEK’s,
free memory. ¢

string

15

all

THEN branch will be taken if the
on by

FOKE's and

GLEN FLEISHMAN, EUGENE, OREGON

Below is & sample of an updated
version of the routine that will output
to & guickprinter without getting
strange characters at the beginning of &
line because of nulls. The routine that
was in Journal #4 (Vol. 1) worked only
slightly., so I added a routine that
would pause for the length of a null,
but neot print it, as the other routine

did. You still have to poke a value
into address 13, but now it has to be
about 120 or higher, but it takes less

time to execute a null than before. If
vou change the wvalue that is being
loaded into Index register Y (at address
$2EMA) o the amount you FOKE into 13,
yvou should be able to get a good speed
going with no null problems.

Another thing you need to do with a
quickprinter is to install a &00 baud
tramasmit switch. I found an easy way to
do it. Take a jumper and wire ti from
pin 11, on U300, to one poke of a signal
poke, double throw switch (8PDT). Take
another Jjumper and wire it from pin 14
on US9 to the other side of the SFDT.
Then, cut the trace leading from pin 2,
Us7 and solder a wire from the pin to
the pole on the switch. The jumpers
should be about & or more inches long $o0
that vyou can mount the switch on the
back panel, or at least be able to
switch it without reaching into the
computer. Tao get 300 baud, put the
switch in the position towards the side
that has the wire leading from US9. For
&HOO baud (transmit only), use the other

position.

ADDR HEX CODE MNEMONIC
QOO0 4CDBOO JMF 400D8
Q0ODE AY22 LDA #422
QODA 8D1AOZ STA $021A
QODD ARO0Z LDA #2
QODF 8D1RO2 STA $021B
QOEZ 4C74A2 JMF 4A274
Q222 202DBF JER $RBF2D
0225 48 PHA

Q226 ADOIOR LDA 402085
0229 DOO2 BNE $022D
QR2ER 68 FLA

NR22C 60 RTS

Q22D 68 FLA

QR2E CR00 CMF #0
Q230 FOQOX BEQR 40235
Q2F2 4CRIFC JMF $FCR1
Q2IE 48 FHA

0236 8A TXA

QRT7 48 FHA

0238 98 TYA

Q239 48 FHA

QETA AOOS LDY #5
QRIC ARZFF LDX #H4$FF
O2IE CA DEEX

Q23F DOFD BNE $023E
0241 88 DEY

Q242 DOF8 BNE #0230
0244 68 PL.A

0245 A8 TAY

02446 68 PL.A

Q247 AR TAX

0248 68 PL.A

0249 O RTS

16

FOR SALE: C2-4P MOD 3 (C4P WITH COLOR
UNFOPULATED) . 16K (SOCKETED FOR 32K),
PRINTER PORT, XTRA 5V &6A POWER SUPFL)
STRING BUG FIX #3 ROM, #350 IN SOFTWARE. -
BEST OFFER. STEVEN BGALE (214) 752-4845

FOR SALE: C2/4F 32K IN EXCEL. SHAPE,
PLENTY DOCUM., SOFTWARES & EXTRAS. %475
OR OFFER, (AL) 414-278-0428, 710 E.
MASON #75, MILWAUKEE, WI 53202

JOHN C. SCHERR, PETERSBURG, VIRGINIA

After seeing the Animal Guess game
for disk in vyour April 82 issue I
thought the CiP users might feel left
out. This should work on other systems

as well, with maybe a change in the WAIT
command.

ANIMAL GUESS

10 REM ANIMAL GUESS
20 REM AUTHOR UNKNOWN — MODIFIED BY JO

HN SCHERR FOR

30 REM INFUT & OUTFUT TO CASSETTE BRASE

D FILE

40 FORCS=1TOZZ2:PRINT:NEXT
S0 DEFFNA(I)=I-N:CLEAR:DIMO%(50),Al% (50

)L L1(S0),L2(50)

60 INFUT"Does the data file exist":A$
70 IFA$<>"Y"THEN@% (1)="DOES IT HAVE 4 F

EET":L1(1)=1:L2(1)=999:N=1

80 IFAS<C>"Y"THENAL$ (1)="HORSE":GOTO170
F0 PRINT:FRINT"Flay data tape. Fress &

HIFT when tone starts.

100 WAITS7088,254,254: L0OAD

110 I=I+1:INPUTE$(I),L1(I),A1$(I), L2(I)
120 IFE$(I)<>"END"THEN110Q

130 POKES1S5,0:FORCS=1TO32: PRINT:NEXT
140 PRINT:PRINT"DATA ENTERED.":FRINT
150 N=I-1:INPUT"Continue ";A%$:PRINT:PRI
NT:FRINT

160 IFN:SOTHENFRINT'C A R E F U L ! MOR
E THAN S0!'"

170 PRINT:PRINT:FPRINT: INFUT"ARE YOU THI
NEING OF AN ANIMAL";A$

180 IFA%="L"THENkK=1

1920 IFA$="Y"THENK=2

200 IFA$="D"THENK=3

210 IFA%$="S"THENK=4

220 ONKGOSUB250, 280,480,510

230 PRINT:PRINT

240 INPUT"Y(ES), L(IST), S(AVE), OR D(
EBUG) ";A$:PRINT:FPRINT:G0TO180

250 PRINT:FRINT"THE ANIMALS I KNOW ARE
260 FORI=1TON:PRINTA1$(I),:NEXTI

270 INFUT"Continue ";A$:PRINT:FPRINT:PRI
NT: RETURN

280 I=1:REM "Yy"

290 PRINT:PRINTQ®%(I);: INFUTA$: FRINT

J00 IFA$="Y"THEN3S50

310 IFA$C>"N"THEN290

320 IFL2(I)<>999THENI=L2(I) : GOTO290

330 GOSUR440

340 L2(1)=N+1:G60SUB470: RETURN

350 FRINT"IS IT ";A1$(I);: INPUTAS

360 FRINT

370 IFA%<C "Y' THEN4OO

380 PRINT:FPRINT"...I THOUGHT S0."

390 FORT=1TO4000:NEXT: RETURN

400 IFAs>"N"THENISO

410 IFI<>L1(I)THENI=L1(I):60TO290

20 GOsSUR440

40 L1(I)=N+1:60SUR470: RETURN

440 INFUT"WHAT WAS THE ANIMAL YOU WERE
THINKING OF "3 A%

450 PRINT:FRINT"TYPE A QUESTION THAT WO
ULD DISTINGUISH

460 FRINTA%:;" FROM "A14$(I): INFUTO1%$:RET
URN

470 N=N+1:0% (N)=0Q01%:A1s (N)=A%:L1 (N)=NsL
2(N)=999: RETURN

480 FRINT:FRINT"I Q% (I) Als (I
) L1(I) L2 ¢X)

490 FORI=1TON:PRINTI;RQ&(I)s" "1Al$ (D)
3" "sL1CID " "sL2(I) iNEXTI

S00 FRINT: INPUT"Continue "j3;A%$:RETURN
S10 REM SAVE ROUTINE

S20 PRINT:PRINT"Set up to record data t
ape. Fress SHIFT when ready.

S30 WAITS7088,254,254:FOKESL17,1

5S40 FORI=1TON

550 PRINT@$(I) 3", ";L1(I) 3", "sA1$(I) 3", "
L2¢D)

560 NEXTI

570 FRINT"END, "O",END,":;0

580 FORT=1TOSO0O:NEXT:POKES17,0
590 PRINT:FPRINT"DATA STORED":FRINT
600 INFPUT"Continue"j;As$: RETURN

GALAXIA ADDITION
ROBERT CORWIN, PORTVILLE, NEW YORK

Recently I was working on one of
Aardvark’'s check ®sum programs namely
"Galaxia" trying to find a way to get
the score and other information that on
the Superboard is printed off screen to
print where I would be able to see it.

I not only found how but I found a
way to make a hard copy at the

First set up the program per
instructions and hit the BREAK key— Hit
M- and Enter 08A3/64 % 0BA4/DO % 088&6/70

0887/D0 % 08CO/71 % 0OBC1/DO % 0BCC/72
08CD/DO % 0B&4D/73 % 08D7/D0O % 08D8/74
08DC/DO % OBED/78 % OBEE/DO % OBFD/&9
OBFE/DO % OBE3/49 % 0BE4/DO
This will put the information at the
top of the screen above the game and
will not interfere with the game.

To change the tanks to something
different GOTO 02AD and insert A-04 and
at 0281 insert A-04 this will put small
flying saucers in place of the tanks.

"! TO RESTART THE GAME ENTER .0250G AND
THE GAME WILL RESTART.

To make a hard copy of this or any
check sum program do the following:
First Cold start the computer and then
enter the following two lines in BASIC:
1 POKES15,2551DIMA% (150) ,B$(150)1
FORX=1TO1501 INPUTA% (X) s NEXT
2 FORX=1TO150: INPUTB® (X) sNEXT

When the above is entered set up your
Galaxia tape and start the recorder and
type RUN, when the program is in hit the
space bar and the Return key to return
to keyboard opp.

¥ I I

At this time "ALL" entries must be
made direct with "NO" line numbers or
you will wipe out all of your strings
and have to start over again.

Remember that the first 225 bits are
the check sum operator, 80 unless you
want a copy of this as well as the
program advance your tape to where the
long lines of code list to the screen
and then RUN.

Now start your printer or teletype as
the case may be and enter:

FORX=1TO1501 PA$(X) : NEXT1 FORX=1TO150:1 ?B$ (X) 1

NEXT--AND HIT RETURN.

If you want the check sum operator
also, then install Ay after the Print
loop s0 as not to have long line of
single entries as the first 225 bits are
in single entry format.

ALIEN II FOR THE C1E CHIP
by NELSON REYNOLDS, MICHIGAN

20 FORSH=S90T0&4731READY11POKESH, Y11NEXT
30 POKE11,781POKE12,2

250 12=L1%2)1POKE&S7, 12

910 IFPEEK (252) =0THENGOSUB1 130

1130 IP=IP+L13TV=IP1AF=01DI=1y

POKEAP, 321 SM=8M~-11 IFTU<=3THEN420

Lines 20,30 and 250 reset the USR
routine to unused space. Line 910 is the
line that was hitting the return error
in line 1260. Line 1130 keeps the
computer from getting confused when
TU=3. By the way, the corrected portions
are underlined in the above program
lines. Also, so far I have not been able
to find any cross between TV and TU.

PING PONG GAME, by John Seybold

Here is a good (2) man Ping Pong game.
It was written on my Superboard (series
ID and will run in 4K. I did not know
how to make it work on any of the bigger
machines s0 I will leave it up to you.
I tried in most cases to use variable
names that make sense such as BL for
bottom left of the screen, LP for the
left paddle character etc... Some
acceptions arej L for difficulty lavel,
L8 was the starting address of the left
paddle, but is also the address of the
paddle after it has been moved around, I
also reused SL$ for the play again?

10 REM-FING FONG BY JOHN S. SEYEOLD

11 REM-1322 BROAD ST.

12 REM-0SHKOSH, WI 54901

20 GOSUR1000:B0OTOS00: ADD SOUND TO LINE
S00

29 REM-Z IS THE DIRECTION OF THE SERVE
3-LEFT, O-RIGHT

30 D=DI(INT(3XRND(2)+1+Z)) : AD=CE-3: IFZT
HENAD=CE+3

?9 REM-FROGRAM LOOF

100 FPOKEAD, BA: Y=FPEEK (AD+D) : IFY< >TWTHEN1

20

105 IFD=-3ZTHEND=31:G0TO200
110 IFD=-31THEND=33:G0TO200

20 IFY< *BWTHEN140

125 IFD=33THEND=-31:G0T0O200

130 IFD=Z1THEND=-3X: GOTOZ0Q0

140 IFY=RWTHENS1=51+1:Z=0: POKEAD,V:G0TO
S00
150 IFY=LWTHEN52=52+1=Z=3:PDKEAD,V:GOTD
S00 :
160 IF(Y<>LF)YAND(Y< >RP) THEN18O

165 IFD=31THEND=33:GOTO200

170 IFD=3ZTHEND=31:G0TO200

178 IFD=~31THEND=-3Z:GOT0O200

177 IFD=-3Z3THEND=-31:G0T0O200

180 IFPEEK {AD+1)=RPTHEND=DI (INT (RND(5) %
Z+4)) : GOTOZO00

190 IFPEEK (AD=-1)=LPTHEND=DI (INT(RND(&) %
3+1))

200 PDHEAD,V:AD=AD+D:PDKEAD,BA

299 REM-READ KEYEROARD

300 POKEEKR,253: Y=FPEEK (KR) : IF(YOR127) < >1
27THEN320

310 POKELS,V:LS=L5~V: IFFEEK (LS) < »*VTHENL
S=L8+V

Z20 IF(YOR191) < >191 THEN3IO

325 PORELS,V:LS=LS+V: IFPEEK (LS) < >VTHENL
S=L5-V

IZ0 IF(YOR253) < »253THEN340

335 POKERS,V:RS=RS-V: IFFPEEEK (RS) < *VTHENR
S=RE+V

340 IF(YOR251) < >251THEN3S0

345 POKERS,V:RS5=RS+V: IFFEEK (RS) < *VTHENR
S=RE-V

330 POKELS,LP:FOKERS,RP:FORX=1TO100-10%
L:NEXT: GOTO100: FROGRAM LOOP

SO0 FORX=26TO43: FOKEAD,. X:NEXT: S1$=8TR% (
S1)+" ":82¢4=8TR&(S2)+" "

510 FOKEF1+1,ASC(RIGHT$(S1%,2)):FOKEP1,
ASC(RIGHT$(S1%,3))

S20 POKEP2+1,ASC(RIGHTS (S2%,2)) : FOKEP2,
ASC(RIGHT$(S2%,3))

S30 FOKEAD,V: IFS1<21ANDS2< 21 THEN3O0

oS40 PRINT: INFUT"PLAY AGAIN";S1%$: IFASC(S
14$) =89THEN20

S50 FOKEF1,V:POKEF1+1,V:POKEP2,V:POKEFR2
+1,V

560 FDRX=1TD30=PRINT:NEXTX:PDKESS0,0:EN
D

999 REM-INTRODUCTION

1000 FORX=1TO10:PRINT:NEXTX: PRINT"

FING FONG"

1010 FORX=1TO&6:FPRINT:NEXTX:PRINT"LEFT M
AN USES °Q° & "A™"

1020 PRINT:PRINT"RIGHT MAN USES *P* & ?
s "2 PRINT

1030 PRINT"TO CONTROL PADDLES":PRINT:FR
INT:PRINT

1040 INFUTYDIFFICULTY (1-10)"sLs IF(L<C1)
OR(L»10) THEN1040

1050 FORX=1TO3I0:PRINT:NEXTX

1099 REM-INITIALIZATION

1100 FORX=1T0O&6:READDI (X) :NEXTX: RESTORE:
FOEES30, 1

1200 BL=54118:WIDTH=22:HEIGHT=18:V=32:T
W=154: BWN=155: LW=157:RW=156

1210 LP=153:RP=152: L 5=53831: RS=LS+WI-2:
CE=(LS+RS) /2: BALL=226 ’

1220 KE=J7OBB=FDRX=BLTDBL+NI:PDKEX,BW!N
EXTX

1240 FORX=BLTOBL+WI:POKEX,BW:NEXTX

1250 FORX=BL+WI-VXHETORL-VXHESTEF-1:POK
EX, TW:NEXTX

1260 FORX=BL+WITOBL+WI-VXHESTER-V:POKEX
L RWINEXTX

1270 FORX=BL-V¥HETOBLSTEFV:POKEX,LW:NEX
TX

1280 POKELS,LP:POKERS,RF:Z=0: IFRND (&) .
STHENZ=X

1290 Pi1=LS+VX11:P2=F1+18:AD=CE:S51=0:52=
0: RETURN

1300 DATAZZE,1,-31,-33,-1,31

18

ABOUT POOL (2 PLAYERS) by D.L. Davis

NOTE FROM EDITOR: This game may need
some adjustments which are up to you.
Here is the letter from the author which
may help you.

It was structured sometime ago and if I
was to start over I’'d probably use a
PRINT AT statement for scoring and
prompts etc., but as the string bug
subtracts 146 from the FPRINT AT (unless
mem is moved) I'll leave it as is.

This one has a break that works pretty
wall. The balls could be moved farther
on the break, but too many may end up
against the rail unless I add a
routine.

Having the arrows and the numbers of
keys is8 a distraction, at least to me.
While playing the game I just draw a
small direction chart to use. The C
counter works with the internal times to
slow the ball down so the shot
diminishes, and it also limits the count
to 50 when a rolling ball hits a
cueball. This is the only bug and it
happens rarely when the rolling ball
pushes the cueball against the rail.

After the ball is made, a # between 1
and 15 is assigned to it and not reused
making the score total =120 and
permitting a tie game. The ball made
indicator is in the lower right of CRT.

I use U and V a lot for determining
which player, and there may still be
some wasteful lines in there though I
took some out.

FOOL VARIABLE LIBT

RD R1 R2 R8 R RANDOM #°8

Gl B2 G3 LEFT PLAYER SCORE LOC.

J 1 J2 J3 R I GHT L " " " " L " LU

uv PLAYERS TURN INDICATOR LOC.
D DIRECTION OF BALL TRAVEL

L1 L2 LOC. OF BALL MADE INDICATOR
P1 TO P& POCKETS

X LOC OF ROLLING BALL
HX HOLD LOC.OF BALL THE HITS BALL
LO W() V() DO() LOC. THE BREAK

c COUNTER FOR DURATION OF ROLL

P LOC. AHEAD OF ROLLING BALL

E EDBES OF TABLE

EE LAST DIRECTION

N, S, NE,W,ETC.

A(l) TO A(B) DIRECTIONS
Z() LIST OF BALLS MADE
SUBROUTINES

4 SCREEN CLEAR

300 CHANGE PLAYERS

400 SCRATCH

500 DIR OF SHOT CHOSEN

600 POKE TABLE AND POCKETS
700 POKE PLAYER + 000

800 SCORING

1000 DIR. ARROWS PER KEYS 1-7
2000 INSTRUCTIONS

V;SREM REV 5.5 FOOL COPYRIGHT BY D.L. DA

Z REM FT. WAYNE INDIANA

3 6GOTOo11
4q§=PEEK(129):E=PEEH(150):PDHEIE?.O:PD&
E130,212:8¢=" ":FORSS=1TO7

S SE=SH+5E+" " NEXT: <E12 s FOKE1L1EC
e i T:POKEL ?.A:FOKEL1Z0, R
11 LD=53452:DIMN(15):DIMV(IS):DIMDD(lS)
12 FRINT"INSTRUCTIONS NEEDED?": INFUT I %
IFLEFT$(I$,1)=”Y“THEN2000 ’
13 GDSUB4:RD=INT(RND(1)199+1)

14 F1=53896:GQ=53894:GE=53893:J1=53916:

J2=53915:J3=53914:Gl=53895

15 IFI$="Y"THENGOSUE1000

16 U=S3830:V=53851:F=54221:B=226:C=01D=
N:BA=111 :

18 POKES3617,B:POKES3SE4, B: POKES3IS86, B
POKES3SS51, B: POKES3SS3, B

19 POKES3ISSS, B: PFOKES3518, R: POKES3IS20, B:
FOKES3522, B: POKES3S524, B

20 POKES3485, B: FOKES3487, B: POKES3489, B:
POKES3491, B: POKES3493, B

25 N=-32:5=+32:EE=+1:W=—1:NE=-31: NW=-33
: SW=+31: SE=+33

24 A1) =+1:A(2)=-31:A(3)=—32:A(4)=-33:A
(S5)=—1:A(6)=+31

25 A(7)=+32:1A(8)=+33

26 P1=53353:F2=53769: P3=54185: P4=5336%1
PS=53785: F6=54201

28 L1=54202:L2=54203:DIMZ (15)

34 GOSUR&LOO: GOSUR700: X=S4033

38 FORLO=LOTOS3679: IFPEEK (LO) =226 THEN40
39 IFPEEK (LD) < >226THEN4S

40 R8=INT(RND(7)%8+1)

41 CU=CU+1:W(CU)=L0:V (CU)=R8

45 NEXT

46 FORXX=XTOX-3B0STEP-32:FOKEXX,111:FOR
T=0TOS0: NEXT: POKEXX, 32

47 NEXT

48 X=XX:POKEX,111

49 GOSUR730

50 D=A(R8)

52 R=INT (RND (RD) X10+1) : GOT0&2

61 X=HX

62 BA=111

63 R2=INT (RND (RD) ¥8+1)

65 FORY=54221T054229: POKEY, 32: NEXT

70 R=INT (RND(C) ¥8+1)

71 C=C+1

73 P=PEEK (X+D) : IFP< >32THENBOQ

76 FORT=0TOC:NEXT:POKEX,32

77 X=X+D:FOKEX, BA

78 IFC3>100THENGOSUR300:GOTOS00

79 DT=DT+1:GOTO70

80 IFP=157ANDD=NWTHEND=EE:GOTO70

81 IFF=156ANDD=EETHEND=NW: GOTO70

82 IFP=154THEND=SW: GOTO70

83 IFP=15STHEND=NE:GOTO70

84 IFP=156ANDD=SETHEND=W:GOTO70

85 IFF=156ANDD=NETHEND=NW: GOTO70

84 IFP=157ANDD=SWTHEND=SE:GOT0O70

87 IFF=157THEND=SE:GOTO70

93 IFP=226THEN200

94 IFF=94THENPOKEX,32:G0TO400

98 IFP=111THENGOSUE1QO

99 GOTO70

100 REM

110 IFFEEK (HX)=111THEN120
115 RETURN

120 IFPEEK (HX+A(R2))=32THEN130

121 IFR2<8THENR2=8:G60T0120

122 IFR2>1THENR2=1

12% C=C+1

127 IFC>0S0THENGOSUB3IQ0: GOTOSOO

128 GOTO120

130 POKEHX,32:HX=HX+A(R2) : POKEHX,111
140 RETURN

200 REM

201 IFPEEK (X)=111THENHX=X

202 BA=226

205 X=X+D

206 R=INT(RND(RD) %8+1):D=A(R)

210 IFPEEK (X+D) < >32THEN20&

215 POKEX,32:60T070

Z00 REM

310 IFPEEK (U)=49THENFOKEU, 32: POKEV,S0:G
0TOZS0

19

340 POKEV,32:POKEU,49 '
350 RETURN

400 X=X+D:POKEX,BAs : FPEEK (X)
UES00: GOTO490

401 FOKEX,96:HX=0:X=54097
402 IFPEEK (X)=226THENX=X+1:60T0402

405 POKEX,111

406 POKEF,83:POKEF+1,67:POKEF+2,82: POKE
F+3,65: POKEF+4, 84,

407 POKEF+5,67:POKEF+6,72

411 IFPEEK(U)=49THEN413

412 IFPEEK (V) =S0THEN414

413 POKEU,32: POKEV, 50: POKEV+32, 145: GOTO
415

414 POKEV,32:POKEU, 49: POKEU+32, 145

415 POKES30, 1:K=57088: FOKEK, 191

420 P=PEEK (K)

422 IFP=127THEN440

423 IFP=223THEN4S0

424 IFP=191THENSOO

435 POKES30,0:G0TO415

440 IFX<S4092THENX=54091¢B0T0415

443 IFPEEK (X—1)=226THEN41S

444 POKEX,32: FORT=0T0O20:NEXT: X=X~1:POKE
X,111 !

445 GOTO415

450 IFX>S4102THENX=54103:G0T0415

454 IFPEEK (X+1)=226THEN415

459 POKEX,32:FORT=0T020:NEXT: X=X+13POKE

=226THENGOS

X,111

460 GOTO415

490 REM

498 POKEX,96

500 IFPEEK (X)=111THENHX=X

501 IFPEEK (U) =49THENPOKEU+32, 155

502 IFPEEK (V) =SO0THENPOKEV+32, 155

503 R=INT (RND(RD) ¥8+1) : C=0

505 POKES30, 1:K=57088: POKEK, 1271 P=PEEK (
K) 1 D=0

508 FOKEF,68:POKEF+1, 73: FOKEF+2, 8231 POKE
F+3,69: POKEF+4, 67

509 POKEF+5,84:FOKEF+4,73: POKEF+7, 791 PO
KEF+8,78

S16 IFP=(127AND191) THEND=S

518 IFP=127THEND=N

520 IFF=191THEND=NW

530 IFP=223THEND=W

540 IFP=239THEND=SW

550 IFP=247THEND=SE

560 IFP=251THEND=EE

570 IFP=253THEND=NE

571 POKEU+32, 3231 POKEV+32,32

577 IFD< >OANDHX=0THEN&2

579 IFD<>OTHENFPOKEL1,32:FOKEL2,32

580 IFDTHENG1

590 POKES30,0:G0TOS0S

600 REM

629 FORE=P1TOP3STEP32:POKEE, 157:NEXT
630 FORE=P4TOP&STEP32: POKEE, 1563 NEXT
631 FORE=F1TOF4:POKEE, 154: NEXT

632 FORE=P3TOP&:POKEE, 155: NEXT

633 POKEP1,96:FPOKEP2, 96: FOKEPS, 96: POKEP
4,96: POKEPS, 961 POKEPSG, 96

634 POKEFR1+32,96:POKERP3-32, 96: FOKEFP4+32
,96: POKEF6-32, 96

635 POKEP1+1,96: POKEF4—1,96: POKEF3+1, 96
:POKEP6-1,96

636 POKEP2+1,96: POKEPS-1,96

640 RETURN

700 REM

701 POKEU, 49

702 POKEG1,48:FPOKEJ1, 48: POKEG2, 48: POKEG
3,48: FPOKEJ2, 48: POKEJX, 48

703 FOKES3627,80: POKES3659, 76: POKESI691
+65: FOKES3723, 891 POKES3I755, 69

704 FOKES3787,82 .

710 POKES3606,80: FOKESTI638, 76: POKESIL70
. 65: POKES3702,89

711 POKES3734,69: POKESI 766,82

720 RETURN

730 V=15

7E3 Y=Y=1:DD(Y)=A(V(Y)) 1 FP=W (Y) +DD (Y)
724 IFPEEK (PP) < >32THEN741

735 IFPEEK (W(Y))=226THENPOKEW(Y) , 32

736 IFPEEK (PP)=32THENPOKEFPF, 226

741 IFY=1THENRETURN

742 GOTO733

800 REM

801 R1=INT (RND(RD)X15+1)

802 FORZ1=1TOL1S

804 IFZ(Z1)=R1THENSO1

806 IFZ1=R1THENZ (Z1)=R1:G0TO809

808 NEXT

809 IFZ1<10THENPOKEL1,32: POKEL2,Z1+48:06
0T0811

810 POKEL1,49:POKEL2, (Z1-10)+48

811 IFPEEK (U)=49THEN820

814 IFPEEK (V) =S0THENBS0

820 SL=8SL+R1

822 S6=INT(SL/100):85=INT(SL/10):S54=5L—
(INT(SL/10) %10) v,

828 IFSS>9THENSS=55-10

845 POKEGS, S6+481 POKEG2, S5+48: POKEGI 54
+48 .
846 IFSL>60THENGOSUB4: PRINT"PLAYER ONE
WINS"SL" TO "SR:END

848 IFSL+SR=120THENGOSUE4: PRINT"TIE GAM
E":END

849 RETURN

850 SR=SR+R1

AARDVARK

TECHNICAL SERVICES
2352 South Commerce
Walled Lake, MI 48088

PRINTED MATTER

ol

852 SI=INT(S5R/100) :S2=INT(SR/10) : S1=SK~
(INT(SR/10)%x10)

858 IFSZF9THENS2=52-10

895 POKEJ3,SS+48:POKEJ2,82+48:POKEJ1,S’
+48

896 IFSR:>&60THENGOSUER4: PRINT"FLAYER TWD\‘/

WINS"SR" TO "SL:END

898 IFSL+S5R=120THENS48

899 RETURN

1000 I1=23: FORY=53350TOSIS428TEPS2: IF [=2
OTHENI=19

1020 POKEY,I:I=I-1:NEXT: =50

1040 FORY=53352T0S3S445TEPI2: IF [=56THEN
1=49

1050 FOKEY,I:I=I+1:NEXT:POKESI991, 20
1071 POKES4054,49: FOKES4055, 38: FOKES405
6,501 RETURN

2000 PRINT"PUSH NUMEERS AS SHOWN":FRINT
2010 FRINT"ON CRT TO SHOOT IN":PRINT
2020 PRINT"DIRECTION OF ARROW":FPRINT:FR
INT

2030 FRINT"PUSH 8 AND O TO MOVE":PRINT
2040 PRINT"CUEBALL AFTER A SCRATCH":FPRI
NT: FRINT
2050 PRINT"PUSH 9 TO FREFARE TO":PRINT
2060 PRINT"SHOOT AFTER A SCRATCH":PRINT
FRINT
2070 PRINT'"FLEET ONE TO GET &1 WINS"
2072 PRINT"PUSK 1 AND RET TO SHOOT FIRS
T SHOT" —

2077 INPUTA ==

2080 IFA=1THENS

2085 GOTO200 (-

