OSI

BASIC
IN
ROM

ALL ABOUT
O0ST
MICROSOFT
BASIC-IN-ROM

VYersion 1.0 Rev. 3.2

Edward H. Carlson

Copyright 1980

0SI 6502 8K BASIC is copyright by Microsoft. The MONITOR
and the 8K BASIC's handlers are copyright by Ohio
g entific Inc,

CONTENTS

INTRODUCTION

SOME DEFINITIONS

STRING CONSTANTS
NUMERICAL CONSTANTS
VARIABLE NAMES

COMMANDS

EDITOR COMMANDS
IMMEDIATE MODE COMMANDS
RUN MODE COMMANDS

STRING OPERATOR
NUMERICAL OPERATORS
BOOLEAN OPERATORS

BIT MANIPULATION OPERATORS
USER DEFINED FUNCTIONS
STRING FUNCTIONS
NUMERICAL FUNCTIONS
ARRAYS

BUGS IN"BASIC

USR(X) FUNCTION

SPACE SAVING

TAPES, BASIC AND HOMEMADE
AUTOLOAD TAPE

FLOATING POINT NUMBERS
TWO'S COMPLEMENT NUMBERS
SOURCE CODE AND VAR. TABLES
ARRAY STORAGE

BASIC TRACE

MEMORY MAPS

LITERATURE

SOFTWARE HOUSES

FURTHER MAPS

(6 o o UE G 18NS 2 G et =R 0 U R oI s BRI -

UninilBin i o oo A WA L0 D DOliDY o0 DY DO ehg kS e
AR e () = o @D~ B \B lag G e ND O

INTRODUCTION

This book is intended for users of 0SI MICROSOFT
BASIC-IN-ROM, Version 1.0, Rev. 3.2. The material is
presented on 2 levels. The first is pure BASIC. The
complete set of commands, statements, functions and
operators are listed, together with detailed explanations
of their applicability and functioning. Many examples are
given of their use to accomplish various results, gl ol
mictfalls Yo be avbided; Ih addifticm, several other toplice
are treated in depth, including techniques to reduce
the memory size required to store and run programs,
techniques to make programs Tun fapter, and casselte

tape input and output of data Ffrom programs.

The second level looks in detail at the storage of
program code and variables in RAM, as well as the pointers
and flags stored in pages $#/, #1, and @P2. Understanding
this material allows exotic programs to be written to
accomplish results not obtainable otherwise.

BASIC runs in two modes, the immediate mode and the

run mode. Following a cold start or a warm start, the
prompter OK appears on the screen to indicate that the

machine is in the immediate mode and ready to accept
keyboard input. To understand BASIC, we need to keep

in mind 4 areas of memory containing code. They are the
BASTC interpreter stored in ROM starting at $AGPP, the
1ine buffer stored in zero page from $13 to $59, the sgource

program starting at $#38¢% and the variable tables stored

smmediately after the source code. With the machine in the
immediate mode, we enter a 1line of material from the
keyboard. The entered material appears on the screen and in
the line buffer. When we hit the (RETURN) key, one of two
things will happen. If the 1ine started with a line number,

integer that can be stored without round off error is
25673 - 1 = 16,772,215, When large or small numbers are
displayed on the screen, scientific notation is used and

considerable accuracy is lost. Example: a one line

program 1 PRINT 16772215
RUN
1.6772E87

VARTABLE NAMES

There are two representations of each variable name
that we will consider, the name you give it in the source
program and the representation of that name in the variable
table. They may not be the same. In the source program,
names must start with a letter and may contain any number
of letters, numbefs and spaces. A name ending with the
symbol $ is a string variable. Names must not contain BASIC
reserved words such as SIN, FOR or TO. BASIC ignores all
spaces in a line of program. In the variable table, the
name is stored as 2 bytes of ASCII representing the first
two characters of its name in the source program. If the
variable in the source program is a single letter then in
the table the second byte of the name is $g@. If the
variable is a string, then $87 is added to the second byte
of the name in the table. In these examples, remember that
the ASCII code for A is $41 and for 1 is $31.

source name in the table table name

A $u1 2@ A

A$ L1 8¢ AS

A1l 41 ‘31 A1

AA L1 1 AA

A1$ L1 B1 A1$
A11$ 41 B1 A1$
AGOTOB (illegal) -

A 1 TIME L1 31 A1

Notice that no record in the table tells how long the name
was in the source. All characters past the first 2 are
ignored (except $ for a string). Notice the effect that
truncation of the source name has in this program:

1 A 1 TIME$="WHO"
2 PRINT A1$

RUN

WHO

C OMMANDS

We will divide commands into 3 groups. Editor commands
are used in the immediate mode. All other commands
can be used in the immediate mode or the run mode. Most
have a natural use in one or the other and some will
perform in a defective manner in other than their natural
mode. We will list each command in its natural mode and
perhaps comment on it again in the other mode.

We depart from the usual nomenclature because it is
arbitrary and confusing. For example, NEW is usually
called a "command" (it erases the source program) while
CLEAR is called a "statement" (it erases the variable table).
Similarly the two simultaneous keystrokes {CTRL /G are
called a "special character" (it causes a break in
running) while STOP is called a "statement" (it causes a
break in running too).

EDITOR COMMANDS

While in the immediate mode, a very simple capability
is present for editing the lines of text. We will show
key strokes in parentheses, e.g. (BREAK) and multiple,
simul taneous key strokes will be separated with a /.

(SHIFT/0)

(SHIFT/P)

(RETURN)

(CTRL /0)

Types a _ and "erases" the last character
typed. May be repeated to "erase" several
characters. (You still see them on the screen

though.)

Types an @ and "erases" the line. (You
atill see it on the scresn),

Terminates the line. T dthe lTine did hot
start with a number, the line is interpreted in
the immediate mode, =Bfitther] ine started with =

number, the line is stored as source code.

Suppresses writing to the screen until
another (CTRL/0) is typed.

132 (RETURN) A 1line number without a statement following

RUN

RUN 31

G0 FO0 3

1o

it will erase the corresponding line in the source
program.

IMMEDTATE MODE COMMANDS

Enters run mode. Starts interpretation and
execution of the source code starting at the
first line (stored at $@30¢). Discards the old
variable table and constructs a new one as it

interprets.

Starts at 1line 31 @f the fSource cods. Digeards
the 0ld variable table and makes a new one.

Starts running at line 31. Keeps the old
variable table.

Lists the source program. May be stopped
with (CTRL/C).

LEST 3k Fists dinet3kwoniky.,

LIST 3t-45 Lists lines 31 throuzh 45,
IS 3= Lists lines 31 to the end.
(CTRL/C) Interrupts execution of the source

program, LISTing, LOADing or other procedure and

returns to the immediate mode. (CTRL/C) may

be disabled by POKE 53%,1 and enabled by POKE 53@,0.
CONT Continues any procedure that has been

interrupted by a (CTRL/C) or a STOP, except LIST.

LOAD Accepts input from cassette tape and puts
it into source memory. To exit from LOAD,
hit (SPACE BAR).

NEW Deletes present program. It does not erase
it from memory however. One thing it does is
to load $@¢ into addresses $g301 and @3g2.
This makes a termination signal for the program
at a point where there are zero lines in the
program. If you wish to recover the program,
look up the address for the second line of the
program and put it into $@301 and @382 in the
format described later. This is not enough of
a fix to be able to RUN the program, but you will
be able toc SAVE, LIST it to tape, then restart
the machine and read the tape back in.

SAVE This slows down the cycle of displaying
input to the screen so that when followed by
LIST, the speed is appropriate for writing to
tape. The information is also gent to the tape
port. Exit from the SAVE mode by doing LOAD,
(RETURN), (SPACE BAR). The procedure for saving
basic programs to tape is: SAVE, (RETURN),

LIST, start tape, and wait for a few seconds
te give a " leader, thelt (RETURK].

Used to insert nulls at the start of lines
of output to tape. Example: NULL 5. The
number of nulls inserted can vary from g to 8.

RUN MODE COMMANDS

The replacement command. LET is optional,
gnd in FPact, is not offefl uged. Exsnples:

LET A=2
AB$="COAL"

This statement allows comments to be included
in the source program. These statements are

ignored during running. Examples:

1% REM PROGRAM ITCH
2@ A=2:REM A IS THE NUMBER OF BITES

Wrong:

28 A=2 REM A IS THE NUMBER OF BITES :B=3
Unlike some compilers, BASIC doesn't pack
repeated characters into compact form. Every

character takes one byte in memory. These two

statements take the same space in source memory:

1 REM 123456789
2 REM AA

There are quite a few commands that change the order of

execution of statements in the program. These follow.

Example:

GUTTO 15

Not allowed:
GO TO N

In fact, such variable addresses are not allowed
in any of the other flow diverting commands

below.

GO SUB Subroutine calling command. Example:

5. d=2

7. 60 SUR. 18
& B=3

14 END

15 Bshaid

15 RETURN

T™He “stztements ‘are exeeuted” 1n~the order~5,7,13,

15,8,14.

ON. .. GO TPOSLT Bxample!
5 ON.M GO TO.1g, 24, 32

The flow is: if M=g go to next statement after 5
M=1 go to statement 1§
M=2 go to statement 2J
M=% or more, go to statement 3@

There is no limit (except line length) to the
number of addresses after the GO TO.

&N, . .GOSUB, ... Exsmple:
5 o8 7 GOSUE 18,12, 15, 3

1f Z=g or Z greater than 4 go to the next
statement. If Z= 1,2,3,4 GOSUB 1#,12,15,3
respectively. Upon RETURN, go to the next
statement. Note the difference in flow from the
ON...GOTO... statement.

e s GUTUE. Example:
5 2=
1¢ IF A=2 GOTO 14¥
15°Y=73
If A=2 then the next statement executed is
line 1@@. If A#2 then the next statement after
the TF. o 8000, puklifle 18] 18 exscubad, In
place of "A=2" there can be any expression that
evaluates to a Boolean "true" or "false".

Examples:

IF AG="DaY G0 TO 338
IF (INT(X) AND 12)=8 GOTO 4
IF 3%X > PEEK(Q) GOTO 66

CITHe; ; JO0RUE.] Doesn't exist, use IF...THEN GOSUB...
instead.

B e v BHEH, v If the expression after IF is true, then
all the statements after THEN are executed. If
not, then the next line is executed. Example:
IF X > 7.8 THEN X=7.8:GOSUB 18:GOTO 30

FOR. ..=,« . BORE: Loops. There are several subtle points
ﬁﬁiT... that are important for trouble free use of loops,
so this discussion will be quite long. Example:

2¢ ‘FOR I=1 TO 3

38 PRINT T

L@ NEXT I

5¢ PRINT "I IS NOW ";I

RUN

-

%)
I IS NOW &4

The loop is always run at least once since the
test for exit occurs at the NEXT statement,
after the loop variable has been incremented.

10

1l

Example:

3 B
3g-71
4@ NEXT
g6 2T I8 HOW" 4
RUN

1
T T How 2

Upon entering the FOR... statement from outside
the loop,. the initial sgluye of. the i00p variable
is calculated, then the value which determines
the exit condition is calculated. The increment
size is also determined (see STEP below).

These values will not change during the rest

of the time spent in the loop. The statements
in the body of the loop will be repeatedly
executed but the FOR... statement will

not be again interpreted.

18 A=@.6
2@ FOR I=2%A TO 3*I
% 7L
L@ NEXT
RUN
152
2% 2

Fup

In the body of the loop, the loop variable may be
redefined:

2¢ FOR I=1 TO 3
P 12

L@ NEXT

RUN

Loops forever

s est TBP

(Nesting)

After entering the loop, you may jump out before
the normal exit. The loop variable retains its

current value:

g0 FOR 1=1 %o 3
3¢ IF I=2 THEN 6§
L@ NEXT
58 ?"NORMAL EXIT":END
68 ?I:END
RUN
2

You may jump back into a loop you have jumped

ont tiie . BUE vou- ity mots impe i’ e ireean 1oop,
Beatlineg” BEETS " without” Tirst foing” through FOR. ..

causes an error break.

Increments other than 1 are implemented
uging STEP:

1f POR X=2.1, 0 i SEEP 0.35
14 FOR X=1@@ TO -1g@¢@ STEP -1g0

1g FOR X=@ TO 1@ STEP g.1*X

Loops can be nested.
1g TOR I=1T03

2 FOR J=1TO03

3@ NEXT J

L@ NEXT I

In the above example, the J could have been left
off of line 3¢ since a NEXT without a variable
name is assumed to apply to the last FOR...
statement encountered.

1¢ FOR I=1 T0 %:FeR =1 1705

4@ NEXT I:NEXT J

RUN ‘

?N\ ERROR IN 4@ (NEXT without FOR error)

12

DETE, &

READ s

il

If the loops end together, a shorter NEXT
statement can be veed:

Lo NERT BB G R L O T T KT
Up te 12 locps ol Lo maaled,

For sborins Nl tial deta 0l B onrogran,
It is reasonably economical of storage space as
it stands. This example uses 12 bytes. It
becomes wasteful of space to transfer this to a
dimensioned array as shown under READ... (below).
DATA statements can contain string constants also:

BATA «Lyde 33 NA" g EEICY

Only the order of the data as it 1s stored in
the program is important, not the number of
DATA statements used. The following

two sets are equivalent:

10 BATAE 1,2,3.4,5 . 18 the sanme as
1@ TATE™ 2
11 DATA 3,4,5 except the latter takes up

more room in memory.

The entries in DATA statements must be
transfered to other statements for use:

TP DA TR JB V305 18
2@ FOR I=1 TO 7:READ A(I):NEXT

The 22 bytes used to store line 1 are now joined
by many more, those in statement 2@ as well as the
L bytes/number in the A(I) array and its overhead
bytes. If simultaneous use of these integers

is not needed, much storage space can be saved.
Example:

1 DATA 1,2,3,4,5,1,2
2@ FOR I=1 TO 7:?READ A:NEXT

RESTORE

CLEAR

PRINT . . .

Ag READ statements "uge up" data, a_pointer is

set to the next available data entry. The DATA
statements are used in numerical order in the
source program, no matter where the READ statements
are located.

18 DATH 1,2
2% GOSUB 9g@d
3% READ B
L@ ?A ;B:END
9f@¢ DATA 3,4
9¢@#1 READ A:RETURN
RUN
i -

This command restores the above mentioned
pointer to the first entry in the first DATA
statement in the program.

This statement cancels the variable table
so that it will start being reconstructed from
new as the program continues. It also has the
effect of a RESTORE command on the DATA pointer.

The variable and expression values following
the word PRINT are displayed on the screen.
In writing a source program the symbol "?"
can be substituted for the word PRINT. PRINT
without any expressions prints a blank line.
There are two kinds of separators in the 1list of
items to be printed following a PRINT command.
They are comma and semicolon., The comma organizes
the material into 5 columns separated by 15
spaces. If the material in a given column is
longer than 15 spaces or otherwise would overlap
the next column, the next column is skipped.
If there are more than 5 items in the 1list to be
printed, then more than 1 line is used.

14

SPCLX)

15

The semicolon puts the printed fields adjacent
to each other. Thus strings would be printed
without spaces between them. Example:

1‘?"Al| ;IUZH
RUN
AZ

But numbers have a space attached to each side so:

Hligeldileet)
RUN
e

Comma and semicolon separators can be used in the
same 1ist. The combinations get complicated and
it is advised that you experiment to see directly
what effects can be obtained.

There are two functions that are used in PRINT
statements so we take them up here.

This function is used in PRINT statements
to add spaces between outputs from the list.
The argument of the function is a numerical
constant, variable, or expression that can take
on valies Jbetwesn @ and 255, If it is not an
integer value, 1t .ig ftrunested to an integer
value. The value § is interpreted as 256.
Large values will cause the printing to continue
on the next line, or even later., Exsmple:

1?2"123456789"
2?7S8PC(3);"A"
RUN
123456789

A

TAB(X)

INPUT . o

DEP FN..,.

POKE. L

This function acts like the tab function of
a typewriter. Example:

1 ?"123456789012245"

2 ?TAB(2);"A";TAB(14);"A"

RUN
123456789812345
A A

This command allows input of data to the
machine from the keyboard or tape. It can be
preceded by a comment. Example:

1o NEOT "LOOKY of B L

2edhsB:C

RUN

LOOER 1y s
-2

In the above example, the three numbers and
2 commas after LOOK? were entered from the

keyboard. Strings can also be entered, Example:

1 INPUT A$

Used to define a "user defined" function.
The function can be defined anytime before use.
This is further explained under the heading
" USER DEFINED FUNCTIONS".

This operator stores an integer N in a
location W of memory. Example:

16

PEEK(X)

STOP

1%

1@ T=21A=53256

20 POKE X +10%T,I+1

RUN

Stores 3 in address 53276

An error is reported if the number to be stored is
out of range. Programs that unintentionally

POKE values into pages $@@, @1, or @2 can cause
very peculiar errors as the run continues,
eventually BASIC may become so scrambled that
RESET must be done. Since variables that haven't
been defined have value zero, it quite often
happens that address $4@¢% is ruined. Then if
the (BREAK) key is hit, a warm start cannot be
accomplished. This can be corrected by using

the MONITOR to put $4C back into $g@@gg. oOf
course, expressions can be arguments of POKE.
Example:

FPOKE «Q# 23 Trld

This is a function, not a command. But
it iz the natural opposite of POKE so we discuss
it here. PEEK returns the value (as a decimal
integer between @ and 255 inclusive) of the
contents of address W. Example:

14 T=3
2@ ?PEEK(I¥*256)
RUN

g

STOP causes an exit to immediate mode
with the printing of a break message. Example:

2¢ FOR I=1 TO 1
3¢ TP I=3 THEN. 8TOP
4@ NEXT

RUN

BREAK IN 372

0K

END

18

Now you may do various immediate commands such
as PRINT I and get results. Just ‘so long as you
do not add any new statements or delete any
statement you can continue with one of the RUN
or GOTO commands. Examples:

21
T=4:CONT

or
GOTO 24

This command is optional under many condltions.
If the program reaches the last line of source
code and that line doesn't transfer the flow
to another program line, you may omit END,
Each of these two programs yields the same

results:
14 ?"END" and {2 PEND" 1 END
RUN RUN
END END

The END statement is necessary if the program
is to end in the middle of the source code.
Example:

SA=1

14 IF A=1@ THEN END

2@ A=A+1:G0 TO 14

STRING OPERATOR

There is only one, concatenation, using a + sign:

1 A$="A":B$="V"
2 C$=A$+B$:2C$
RUN
AV

A1l strings that are not contained in BASIC source code

atatements are stored in "string memory" .atl the top

of RAM memory.

NUMERICAL OPERATORS

- Negation -5, =N1
(SHIFT/N) Exponentation #5388
Mul tiplication

Division

Addition

- Subtraction

i o

The above numerical operators have their usual meanings

in arithmetic and algebra and may be used with parentheses
to make explicit the order of evaluatien. Inappropriate
order may give an error message. Consider the following
examples done in the immediate mode:

PR4=3 get -6

P2=#3 get ERROR
D23 et b
22,.-1.5 get F.353553
?2-,1.5 get SJERROR

Parentheses can be nested up to 12 deep.

BOOLEAN OPERATORS

These operators return values of-1 for TRUE and
@ for FALSE.

> Greater than

< Less than
{> or){ Not equal

= Equal to
{= or={ Less than or equal to
>y= or=)» Greater than or equal to

Some examples in the immediate mode:

X=2:72=X gt ~1
X=2:7X=2 get -1
?22€3 aat -1
7223 get ¢

Just after a warm start you may get an Oq ERROR instead.

BIT MANIPULATION OPERATORS

Numbers that are in the range of -32768 to +32767
inclusive are treated as 16 bit 25 complement numbers
by the following operators. (Truncation to integers is
performed, if necessary.) Consult the appropriate section
for an explanation of 2% complement binary numbers. Some

examples in the immediate mode:

NOP - 2., get 2

?NOT 2EL4 get -20@71
?NOT 2E6 get F/ ERROR
R4l O 2 get 3
1 A get @
?1 OR 300pF get 3pp0p1
AND For each bit in the pair of numbers connected

by AND, the corresponding bit in the result is
one only if both the bits E¥e 4, *THig~is ‘most
easily seen by an example in binary notations

%@1g1 AND %g@11 = @gg1

OR Inclusive OR, The Fglvern Bit A1 0L either
(or both) numbers have a 1 for that bit position.

g1g1 OR gg11 = g111
NOT Each bit of the number is reversed, 1 for ﬂ
grd ¢ for 1:

NOT @11 = 1818

21

USER DEFINED FUNCTIONS

Functions can be defined by using a DEF... statement
anytime before use. The function has 1 variable but other
parameters can also occur in the definition and will be
given their current values at the time of use., Any
number of functions can be used in one program.

1# DEF FNAX(X) = 3*X+B
20 z2=2
24 B=1
3% ?FNAX(Z-1)
RUN
i)

Not allowed: FNA$(X), FNA$(X$), FNA(X,Y), FNA(A$)
Function variables are stored in six bytes, among the
numerical and string single variables. There is an $84
added to the first byte of the name to signify that the
variable is a user defined function., Note that one is
allowed to have all the following 5 variables in the-
same program because they are always stored under different
names or in separate parts of the variable table.

AB, AB$, AB(I), AB$(I), FNAB(I)

STRING FUNCTIONS

String functions either have a string as an argument,
or yield a string as a value, or both. Those that return a
string value have a name that ends in $.

ASC(A$) Returns the ASCII value (decimal integer)
of the first character in the string A$.

CHR$(A)

e

Returns the character whose ASCII value is
&. TIf you have the graipliics chip, CHR(A) will
print the corresponding graphics character for
A such that @¢A<255. Example:

19 FPOR I=0 TO 255
28 X$=CHR$(I)

38 Y=ASC(X$)

Lh@ 2X$;Y

5@ NEXT

This program printe gall the sraphics charscters

(except for I=@, because the CRT routine ignores nulls).
When 18, line feed is printed, a line feed occurs.

When. 13, CR 1= printed, B parrigsge Foturt Occurs.

LEFT$(AS,I) Gives the left most I characters of A$.

If I=f there is an F/ ERROR reported.

RIGHT$(A$,I) Gives the right most I characters of A$.

If I=@ an ERROR is returned.

MID$(AS$,I,JT) This is/intended toigive a string J

LEN(A$)

STR$(X)

characters long, starting at the Ith character
of A$:and econtinmuime to the right. But in no
case is MID$ longer than from the Ith character
to the end of A$ inclusive, even for large J.
If J is omitted, then MID$ goes to the end of
A$., If IDLEN(A$) then MID$ is of zero length.

Returns the length of A$.

Gives a string which is a representation of
the number X. Example:

1% N=6.023E23
2% N$="AVOGADRO'S NUMBER IS "+STR(N)

38 ?N$
L ?LEN(STR$(N))
RUN
AVOGADRO'S NUMBER IS 6.@23E23
14
VAL (A$) The opposite of STR$. If A$ is a string

representing a number, VAL returns the corres-
ponding value. If A$ does not represent a number,

VAL returns @. Example:

19 A$="-g.g3E23"
28 ?2VAL(A$)

RUN

-3E+21

Another:
1¢ A$:nAn

28 ?VAL(A$)
RUN

g

FRE(A$) Not allowed wunless A$ has been previously
defired, Then 4% hes the game effcet 28 PRE(1)
or any other numerical valued function or

constant.

o

NUMER ICAL FUNCTIONS

In the following functions, the argument may be

any constant, variable or expression that has a numerical

value.

ABS(X)

THTCL)

SGN(X)

RND (X)

SQR (X)

Example in immediate mode:

PEXFLNOT131) glalsl 35335

¥Yields: the absolute walue of X. For
X=2,%,-2 it returns 2,8,2 respectively.

Truncates decimal number to an integer.
For I=1.1,%,-1.2 it gives1,d,-2 respectively.

Gives the sign of X. For X=#, there is no
sign. For X=2,f,-2 it gives 1,@,-1 respectively.

This is a pseudorandom number generator.
If the argument is @ it yields the same number
as the previous call gave. If the argument is
negative, it serves as a seed which resets the
generator and changes its period. The number
returned by the negative seed is not itself
ugseful as a2 random number. -In ordinary use the
argument is a positive number and a pseudorandom
number between @ and 1 is returned. If not
seeded, the generator has a period of 1861.
That is, only 1861 separate "random" numbers
are produced, and then further calls repeat
this sequence in the same order. The generator
should be tested with negative seeds to see i
it remains a good generator. I have not done
thig.

Square root, for positive arguments only.
Example:

2SQR (128889%) get 10¢8.085

24

EXP(X)

LOG(X)

SIN(X)

COS(X)
TAN(X)
ATN(X)

FRE(X)

25

Exponential X where e=2.71828.

Natural log. You can obtain the log to
base 18 by using LOG(X)/LOG(18). The argument
X must be positive.

Sine of X where X ls in radians. The
conversion that 180° is pi radians is needed
to work problems given in degrees of angle.
These trig functions seem accurate to within
the number of digits shown on the screen.

The cosine, tangent and arctangent are
likewise defined for arguments in radians.

This function returns the number of bytes
in RAM (that have been allocated to BASIC at
cold start time) that have not yet been used to
store source code, variable tables or strings
in high memory. Example for a 4K machine whose
memory was set to 1032 at cold start time:

1?FRE(1) RUN
2A$="A" 199
3 ?FRE(f) 193
L A$=A$+AS 191
5 ?FRE(f)

The value of the argument doesn't matter for

this function. In the above example, the first
FRE printing gives the bytes free after the
source program is stored. The second allows for
the variable table for A$, 6 bytes long. The -
third allows for the string "AA", 2 bytes long
stored at $@3FD and P3FE. When FRE is called, it
performs a "garbage compaction" of the strings
stored in high memory, discarding the no longer
used strings and compacting the rest into highest
memory.

TAB(X)

SPC(X)

POS(X)

USR (X)

PEEK(X)

WAIT I,J,K

s E e s R

Discussed at the PRINT command.
Likewise

Used with terminals. Gives the current
location of the print head.

See the separate discussion of the use of
this function that allows one to interface
machine language subroutines to BASIC programs.

Used to return the numerical value (decimal)
stored in a given memory address. See commands
FGEter-RPOKEY 5 3

Used to interogate a memory location,
especially an input or output port flag register.
The memory location I (decimal) is exclusive
OR'ed with K and then AND'ed with J. This is
repeated until a non-zero result is obtained,
upon which the execution of the next statement is
begun. Examples of use are given under tape
iaput and output,” “If K 15 omitted 1t 1s taken
to be zero.

) Used to assign dimensions to the indices

of an array. (See the discussion under ARRAY).
Its most familiar use is with constant arguments
at the beginning of a program:

5 DIM U12(16)
but it can be used with variable array sizes:

1¢ INPUT N
2@ DIM ER(2%*N+1)

26

ARRATS

String arrays and numerical arrays are similar in all
respects except for the value stored in the 4 bytes of each
element. The value for a numerical variable is a 4 byte
floating point number. The "value" for a string variable
is information as to how long the string is and the
address of its firet byte. The string is usually stored
in the source code statement as a string constant. If
not, it is stored at the end of RAM memory.

Arrays can have from 1 to 11 indices. For example,
A(I,J,K) has 3 indices, andi¥78LE) hes onee. The dindices
take on values @ through a maximum given by a DIM statement.
DIM A(2) sets up an entry in the variable table for A
with 3 elemerntes A10), Al(1)}, and &(2), If no dimension
statement 1s encountered before an array is used, the
dimension of each index defaults to 1f (so the index is
allowed to take on values @ through 1F). The maximum size
any index ecan be asgsigtied in & DIM statement is 32767, but
with 4 bytes per element (plus overhead bytes),
obviously real arrays must be much smaller than this.

An array can be dimensioned only once, either by a DIM
statement or a default. Space in the variable table is
assigned to the array at the time of dimensioning. Any
number of arrays, DIM statements and arrays per DIM .
statement can be used.

The total space an array occupies in the variable table
is shown by considering DIM A(5,6,7):

3 overhead (name and number of indices)
2x3 2 bytes for each index (to give its length)
6x7x8 number of elements in the array

x4 4 bytes per element
Then the total size in the table is 3+2x3+(6x7x8)x4=1353 bytes

All arrays are stored after all single variables in the tables.

ar

28

BUGS IN BASIC

There are 2 problems using string variables in BASIC.
The first occurs when a string variable stored in high
memory is redefined. BASIC doesn't know that the string
has been abandoned and continues to hold space for it. If
this cycle is repeated, memory eventually fills up.

1 A$:"Bn
1# FOR I=1 TO 14¢
2% B$=B$+A$
58 NEXT
6¢ B$=uu
78 GO TO 1#
There is a way out however. If 65 ?FRE(9) or even
65 X=FRE(1) is inserted, BASIC does an accounting when

it encounters FRE and the unused strings are abandoned.

This leads to the second problem. If a string array
has been defined, then when FRE is interpreted, the
program may hang, with occasional screen flickers. The
solution to this problem was provided by Mark Minasi and
published in PEEK(65). Simply pick the dimension of the
array as 3¥(any integer)+2. This is no hardship, because
there will be such a number near any desired array size.

Another bug in BASIC occurs just after a warm start.
If you try to execute an immediate command, you may
get an error message. The cure is to Just repeat the
command. You can avoid this problem by entering
any keystroke and (RETURN), accept the error and go on
to the desired command.

- -

-

USR(X) FUNCTION
MACHINE LANGUAGE SUBROUTINES IN BASIC

"USR(X) You can write a machine language subroutine

which can be called from BASIC, do its stuff,

and return to the BASIC program. This is done
with the USR function. If desired, the argument X of
USR(X) can take a 16 bit number to the subroutine.
Two bytes can be returned to BASIC as the value of USR(X).
Each of these transfers is a little involved, so first
we will demonstrate the simplest case, where the subroutine
is called, but no numbers are passed either way. Write
a BASIC program:

2P P=UBRTX)
5¢ STOP

Now (BREAK) (M) to enter the MONITOR and place these numbers
at the addresses shown:

$PPPB 22

ggac g2

@222 68 RTS
The address @222 contained in the two bytes at @B and
#C is the start of our program, which in fact only has one
instruction, RETURN, Now do a (BREAK) (W) for a warm
start of BASIC and RUN. If all is well you will get BREAK
IN &0,

The next step is to pass a value, X, to the machine program.
Write:

h THPUT VX" . %

28 Y=USR(X)
' Sl e sy TR
L

99 GOTO 5

29

30

(BREAK) (M) to MONITOR and enter code starting at
$d22: 28 4f g2 JSR

A5 AE LDA FACHI

8D 28 D2 STA screen left
A5 AF LDA FACLO

g0 22 Do B1L porern right
64 RTS

goug 6C g6 PF JMP indirect

The code whose address is stored at $F6 is a subroutine
which takes X and converts it to a 16 bit 2s complement
number and puts it in: ‘

$4¢ AE $HIAT
LO byte HI byte 16 bit number
FACLO FACHI

Our subroutine must pick it up from there and in this case
we poke it onto the screen as a graphics symbol which you
can look up in the GRAPHICS MANUAL. Now (BREAK) (W)

for a warm start and RUN to see the results. Notice that
the value of X in BASIC is unchanged by all this, and ¥
has some peculiar value. It was necessary to do the two
step JSR @24 and JMP indirect to get back to our machine
code. Otherwise the JMP would take us to a subroutine
that would return us to BASIC.

The last step is to return 2 bytes from the machine
code. This is done by putting bytes into the Y register
and the accumulator. These are transfered to the value
of USR as a 16 bit signed number using another machine
language program whose starting address is contained in
$00@8 and @PF9. This code will return us directly to the
BASIC program., Add to the previous BASIC program:

Jt

5 -TINPUT "A X ,B" AL ;B
8 R=3%256
9 POKE R-2,A:POEKE R~1,E

" (BREAK) (M) to MONITOR and add to our previous program:

SU22p AC FP g2 « LDY. B
AD FE g2 LDA A
6C g8 g8 JMP indirect

(BREAK) (W) for a warm start and RUN, The variable Y is
now formed from the 2 bytes A and B in 2s complement form,
A being the HI byte and B the LO. :

To make the BASIC program's use of machine language
trouble free to the user, the machine language instructions,
as well as the starting address, can all be POKE'ed into
memory.

SPACE SAVING

The most important attribute of a program (after
requiring that it run correctly) is clarity, so that a
reader can understand it easily. This requires careful
structuring of subroutines and statements, many REMarks,
spacing between characters (FOR M=1, not FORM=1),
distinctive variable names, etc. When space in memory
becomes tight, all this may go by the board. In addition,
some other tricks to save space may be tried.

You can reuse variable names. If Z$ is used only
once, in an INPUT statement for example, and a later gtring
is called D$, then replace Z$ with D$. This saves 6 bytes.
The same applies to numerical variables. Watch array use.
DIM A(1) with elements A(F) and A(1) requires 15 bytes in
the variable table, while A1 and A2 together require 12
bytes in the variable table, and may also save in the
source program., In fact A,B instead of Al and A2 would

2

save 2 bytes in the source code.

Long arrays are more efficient than many equivalent
single variables. It is wasteful to use floating point
variables to store small integers. Sometimes they can be
"packed". For example, instead of A=1,B=2,C=3 (18 bytes
in the variable table) pack D=10203, so A=INT(D/18@@7)
B=INT(D/14@)-A*1@@@#, etc. Of course, the decoding
statements in the source code take up a lot of room, so
there is a net loss, but if the variables are large arrays,
the savings could be substantial.

The practice of initializing arrays using DATA
statements is;wasterul of space. Consider these 2
programs which do the same job:

1 DIM H(9)

ZDATA 0,1,2, ly el s o

3 FOR I=@ TO 9:READ H(I):NEXT
L ?2H(3)

and

1 H$="@123456789"
2 ?VAL(MID$(H$,4,1))

The second program saves 78 bytes in memory by storing the
integer constants in a string, from which they can be
recovered for use relatively easily.

Use multiple statements on each line number: -
1 A=1:B=2
instead of
1 A=1
2 B=2
will save 4 bytes for each colon used. Put REM's on a
functioning line for the same reasons

1 REM START
2 A=3
uses 4 more bytes than
2 A=3:REM START

Repeated characters are not stored in a packed manner
in the source program.

1 AAAAA=1:REM GO
1 A=1:REM GO

Both require the 15 characters you see (including the
space characters). Both have the same variable table too.

Sometimes integers can be stored on the screen via
POKE's and recovered via PEEK's. This may be possible in
a game where the display itself can be data. Or if a C2
machine is using the 32x32 display, the blank half of the
Screen memory can be used for data storage. The margins
of the 25x25 display of a C1 machine may also be used.
Multiplexing the screen memory may also work, going to =
short machine language routine via USR which uses the
screen as memory but accomplishes its deeds very fast and
then clearing the screen again, returns to BASIC in the
twinkling of an eye. I haven't tried this multiplexing
method yet. In 1 second you can do about 20,000 machine
operations, 10 for each memory cell in the display.

Since most of page $@2 is unused, it is a good place
to put your machine language subroutines that are accessed
via USR. You can also change the vectors in page $g¢
so that BASIC memory starts at $g222 instead of @394,

Do a cold start, then (BREAK) (M) to the monitor. Put
$48 in $@222, $23 in $@P79 and $g2 in FF7A. Then
(BREAK) (W) to warm start and NEW (RETURN) to reset the
rest of page $8F. You are ready to go with BASIC with
7/8 of a page extra room!

525

TAPES, BASIC AND HOMEMADE

Ever wonder what is on the tapes of your programs that

you have SAVEA? It is not what is in memory, exactly!

It is more like what is on the screen as you LIST. Suppose

your source program were:

1 AAAAA
2 BBBBB

Of course this program won't run, but its code is in memory.

Suppose that you do a NULL 2 in immediate mode and then

a SAVE, LIST to put the program on tape. The code on tape

is ASCII which we here represent in decimal numbers.

B SER ama e RSl B R

e Ll 0 U 00 Ui

80 e M i os ot 0 e o L U 0 O 0 L U
10 @ 03 90 sz 60 mie0b oy 0 O O O U 0

10 line feed
32 space
13 return

The two nulls after the 10 (line feed) are the work of
the NULL command. Default is zero nulls., Each line
begins with a line feed and ends with a carriage return
followed by 10 nulls., Two empty lines are sent before
the BASIC program code starts.

The tape port address of a C2 is at $FCPP=64512,
and for a C1 or a Superboard II is at $F@PF=61L44d.
You might want to read your BASIC tapes with a program
like this:

1 Q=64512:R=Q+1
L WAIT Q,1
5 ?PEEK(R):GO TO 4

© ME)

(4 A)

o O

DS

34

32

But this program WON'T WORK for reading BASIC because

the PRINT is too slow and so you will skip some bytes. This
program will work for reading your own tapes if you space
the bytes out when making the tape, more later.

You can read a BASIC tape by storing the bytes in an

array:

1 DIM D(20%)

2 Q=64512

3 R=0ib]

L4 WAIT Q,1

5 D(I)=PEEK(R):I=I+1:GO TO 4

When you get an error break because you tried to fill
D(2f1), you can go to immediate mode with

FOR I=1 TO 2@@: ?2D(I);:NEXT

to see the output. The problem here is that the first
part of D may be filled with noise. You may have trouble
deciding where the taped program starts.

If you want to store some data on tape, you can go
two routes. If the amount of data is relatively little, so
that time to tape and read is not important, then you may use
the functions already in BASIC, such as PRINT, INPUT,
SAVE, AND LOAD. Here is a program to illustrate that.

36

14 DIM Y(24)

3¢ FOR I=1T02@:Y(I)=I:NEXT

Ly SAVE

45 FOR I=1T05;?@:NEXT:?255

50 FOR I=1T02@:?Y(I):NEXT

6% LOAD:INPUT"HIT SPACE BAR TO CONTINUE";A$
99 END

1407 DIM Y(20) :LOAD

1@1@ INPUT X:IF X<>@ THEN 1g1¢

1@2¢ INPUT X:IF X=g THEN 1g2¢

1@#3% FOR I=1T02@:INPUT Y(I):NEXT

1@4@ INPUT"HIT SPACE BAR TO CONTINUE";A$
158 FOR I=1 TO 2@:?Y(I);:NEXT

9929 END

To write to tape do RUN. To read from tape do RUN1ggd.

Line 45 puts a leader on the tape that is recognized

by lines 11 and 1@2@. Lines 6@ and 1@4@ allow one to
get out of the LOAD mode. The LOAD in line 6§ is to get
you out of the SAVE mode.

A faster way to store data from an array to tape is

to use this program.

DIM D(208d)

GOSUB 1@@:REM TO PUT YOUR STUFF IN D
Q=64512:R=Q+1

FOR I=1TO2¢@:WAIT Q,2

POKE R,D(I)

PRINT D(I):REM TO SLOW THINGS DOWN

7 NEXT

(€ 0O Wt =l O R a6 N oo

The resulting tape can be used with the first program
we gave in this section.,

Finally, this faster way to read and write tape
will probably need to use the "leader" method that we

used on the previous program.

AUTOLOAD TAPE

Machine language tapes from 0SI use the autoload
format. Each byte to be sent is broken down into the
two ASCII characters that represent it in hexadeciaml
notation. TFor example, if Z1111@@11 is the form stored,
it is sent as 2 bytes, F and 3, or in ASCII as $46
and $33. After each such pair of characters, a {(RETURN)=
$#D is sent. Thus 1 byte in memory is recorded as 3 bytes
on tape. This strange method is designed to use the monitor
for tape in a way that mimics the keyboard, and allows
the tape itself to switch to the keyboard mode, at the
end of the loading process, so that an autostart feature

is possible.

The characters to be found on the tape are the 16
hexadecimal digits @ to F, and

. $2E
(RETURN) 2D
7 2F
G L7

which are familiar to you by your use of the monitor.

The tape format also includes the starting address of
the code to be taped (or to be loaded) and the starting
address of the code to be executed. This can be the
program just loaded, some other program, warm start of BASIC
(¢@@%) or the monitor (FE@Z or FFPP). The G for go is
optional. Representing the 2 bytes by H and L (for high
nybble and low nybble) and (RETURN) by R, the whole tape
format is as follows:

.HL HL / HLR HLR HLR ...HLR.HL HL G

The left HL HL is the starting address, LSB (least significant
byte) first. The right most HL HL is the starting address at
which the monitor will start execution if the G is

found on the tape (or entered from the keyboard).

bifd

FLOATING POINT NUMBERS

Single numerical variables require 6 bytes of table
space, 2 for the name and 4 for the value. Numbers are
stored in a floating point binary representation. The
first byte gives the exponent. The next 3 bytes give the
mantissa and sign. For example:

3 = %@@#11 in one binary nybble

(% preceding a number indicates it is in binary, $ indicates

hexadecimal.)
You can add as many binary zeros as you wish to the left

(just as in decimal numbers).
3 = %8803 P11 in one byte
Make it a fraction by mowving the "radix point":
3 = #g.11 x 212 in analogy with
p=f.3x 19"
So the internal representation of 3 could look like this:

jzzﬁzgazﬁlﬁﬂ Qggﬁ $20 gg but doesn't, quite.

exponent 3 byte mantissa

Il

The exponent is +2, but it has been biased by adding $84
so that negative exponents can also be expressed. Then
—2 is represented by $7E and an exponent of zero by $8f.

However, we have not yet represented the sign of 3
(+3 and not -3). Also, there is a redundancy, since
the first digit of the mantissa will always be 1. So
remove this redundant 1 and replace it with a sign bit,
g for + and 1 for -. The final result is:

3 = %11
3 ig stored as $82 %0100 FIEP $48 4P
-3 as $82 %1188 etc.

Il

$82 g op PP
$82 cg 78 2

S8

The largest number that can be represented by this system

with nouernor is
224—1 = 2563-1 =16 22 P T 110 199 2119 1 A sda 11

Tt looks like $98 7F FF FF in the table. When numbers are
translated into decimal for presentation on the screen,
congiderable accuracy is lost. 16,777,215 is presented

as 1.6772E+07.

What happens if you try to store an undefined value?
The 2 line program

1 A=B

2 TA

RUN

g

runs OK. The variable B, of course, is undefined and
has no entry in the table. A is represented by the 6 bytes

41

BN

40

TWOS COMPLEMENT BINARY NUMBERS

To represent signed numbers, the left most bit is
reserved to be & sign bit (@ for +.and 1 for =). 'Then
the best way to represent negative numbers is in the 2s
complement form. Example:

L 2 g
B el ld
20 cofpip
1 JJ U0
g e
-1 7 Bl
-2 11198
-3 1181
-4 11848

To get the negative of any number (+ or -) when in 2%
complement integer form, first invert each digit (every 1
goes to @ and @ to 1). Then add 1 (with binary carry).

Example: 3 = %@8@11
-3 = 1180 + 1 = 1191

-2 = %1118
2 = %P0 + 1 + gLy

inan 8 diglt Integely
L
-4

Il

HpEp PLEP = S

FZET11 gL s 1 = 7111 1180 ="¢rC

SOURCE CODE AND VARIABLE TABLES

The source code memory is rearranged as each line is
entered so as to keep the lines in numerical order. Adding
or deleting a line from source code "destroys" the variable
table. (Pleces OF all of 1t may fge fpund by locking In
memory with the monitor or PEEK.) We illustrate storage
by some very simple programs:

1252
RUN
$2308¢

o) start of source program
;zf%} address of next line
1

gﬂ} line number

L1 A
AB token for =
33 S5 in ASCIT

gﬁ line end symbol

when address of next line is zero, source ends.
L1] variable table starts. First 2 bytes are name A,

82 1 Next 4 bytes are value 3 in floating point.,

empty ..
1 A$:||B||
RUN

$7300 %ﬁ Start of source program
C

e A

2k e 8% Hoksn

AB = token

22 " token
¢dago Lz B in ASCIT

22 " token
o) line end
ﬁﬁ} program end (2 bytes)

L1 A

gl B

g1 length of gtring

¢9] address of first byte of string (2 bytes)

L1

L2

10 DEF FNAB(A)=A%*2

RUN
$308 ¢ $P314 Cl} FNAB
gg} } addrees of definition of FNAB
gg}DEF {}53} address of value of argument
2§ space
9E FN
L1 A ﬁg L4 byte value of A
g B
L gg
b A Y
30] empty ..
AB =
g3gE 41 A
AE %
92
Y

@312 gg}

In the above example, if we add the line
20 2S5 PREB (23

after RUNning the address value of the argument would
still be that of the value of A, even though the execution

of FNAB calculated the argument as the value of Z+3=5, and
A is unchanged.

When strings are concatenated, they are stored at the end
of memory. For a 16K machine the last byte is $3FFF.
When the following program is run, its variable table
looks like thigm:

1 Ag="p" $731B 41

2 A$=A$+AS 8¢

RUN #2 string is 2 bytes - long
FE ite first byte risiat 837 FE,
3F
empty o..

$3FFE L2
L2

ARRAY STORAGE

We illustrate the storage of array variables by showing
the variable table for this program:

10 DIM-AEL ;2)

20 FOR =g 101

30 FOR: J=p=10 2

o BT =1 O T8
50 NEXT

RUN

The Variable table starts at $F348:
$A348 49 I $435D % =0

29 A(0,0)
1 ’

o g5
LA J ;ﬁ.A(l,O)
£ i

%% &=l

4 g9 A(0,1)
bt &

29 %
$21=33=6x4+9=

Jju]

size of 84 =11
table gﬂ Sl L)
@2 2 indices fo]
%ﬁ g heg 3 82 =2
3 values gﬁ A(0,2)
gg T chevs -2 ﬂ :
Ba =1
gﬂ it)
o
empty ...

Unlike a speedometer, the fastest changing digit is the
one of the left. Note also that table size has its most
significant digit last but the index size has it first!

43

BASIC TRACE

Knowledge of some of the things stored in pages @ to 3
during the running of your programs allows you to write
some subroutines to do exotic things. Here is a crude
example of a TRACE routine.

$PPBC 4C 2A P2 JTMP @224
BF EA EA EA NOP

PEPA AEB C3 INC 1O address
20 "Dg oz BNE
PR ABETL INC
20 A5 08 LDA $C3 fetch address to this program

%2 8D 3B gz ST GERIB

35 A5 Clh LDA $Ch

57 B 50 B2 BT Bo2sC

38 AD @@ ## 1DA $---- load character

30 8D 1F D1 STA $D11¢¥ store on screen
ug 28 ## FD JSR $FDPP wait for keystroke
b3 4C C2 g¢ JHP BEfC? return

Cold start BASIC and write & short program., Then (BREAK)
(M) to monitor and enter the code listed above. When
finished loading and checking the code, (BREAK) (W) to
warm start BASIC. Now RUN your program. The characters
of RUN and your program will appear on the screen one by
gne. After sach one, hit g (SPACE BAR) 1o go to the mégt.
The tokens for BASIC reserved words will appear on the
screen as graphics characters. You can use your GRAPHICS
MANUAL and a list of tokens for reserved words to decode,
but usually the letter and numerical characters alone
will be enough (with careful attention) to keep you located
in the program., A+t .any peint you can break to
inspect various variables and, by going to monitor, to
inspect memory locations for flag values, etc.

MEMORY MAP

C2_LP with 16 K of memory and a BASIC-IN-ROM Version 1.0, Rev. 3.2.
Most of these entries are due to Bruce Hoyt and to Jim Butterfield.

00
03

06
08
OA
0D

OF
oF
10
o
15
5B
5
5D
5E
5F
60
61
62
63
64
65
68
6B
6F
L
g
75
i

LC 7k
4o C3

05 AE
C1 AF
LC 88
00

00

L8

38

00 40
to 5A

0z
A8

AE

JMP to warm start. $BD11 earlier, cold start

JMP to message printer. A,Y contain lo,hi address
of start of message. Message ends with a null.

INVAR, USR get argument routine address

OUTVAR, address of USR return value routine

JMP to USR(X) routine

number of nulls after Line Feed., set by NULL command.
Note! not the nulls after CR.

line buffer pointer

terminal width. $48=72

input eols - 1imit

integer address

line buffer

used by dec. to bin. routine, search character, ete.

scan-between-quotes flag

line buffer pointer, number of subscripts

default DIM flag

type: $FF=string, $00=numeric

DATA scan flag, LIST quote flag, memory flag

subscript flag, FNx flag

$00=1input, $98=read

comparison evaluation flag

CNTL-0 flag. $80 means suppress output

temporary string (descriptor stack) pointers

stack of descriptors for temporary strings

temporary variable pointer, also used by dec. W0 biv,
pointers, etc
product staging area for multiplication

"

]

79 0] 0% address of start of source program in RAM

7B 03 03 single variable table

i 0808 array variable table

AR g B empty BASIC memory

27, PP 3¢ high string storage space

83 -- -- temporary string pointer

g5 00 40 address + 1 of end of BASIC memory

87 -- FF current line number

89 -- -- line number at STOP, END or (CTRL/C) break

88 -- 00 program scan pointer, address of current line

8 -- -- line number of present DATA statement

Er 00 J03 next address in DATA statements

9T -- -- address of next value after comma in present DATA
statement

93 -- -- last variable name

g 1l e last variable value address

g o= = address of current variable, pointer for FOR/NEXT

39 -- -- -- work area; pointers, constant save, etc.

g == e e 4

e L RR i

A1 4C -- 00 JMP, a general purpose jump

A4 -- -- -- misc. work area and storage

A7 -- FE 00 U

AA -- -- pointer to current program line

AC %o BO ~ first floating point accumulator. E,M,M,M,S

g UH 92 AD and AE are printed in decimal by $B962 -

AE 68 FACHI, byte transfered by USR(X)

AF 00 FACLO, %

BG 20 gign of Aecy #%

Bl ~- series evaluation constant pointer

B2 - OO accumulator #1 high order (overflow) word

B3 to BY7 second floating point accumulator. E,M,M,M,S

B3 BD @0 00 10 00 E=exponent, M=mantissa byte

B8 92 sign comparison, acc., #1 vs. #2

B9 A1 acc. #1 low order (rounding) word

BA 98 A1l
BE ta B3
FRC® T6 03
e Do 08
ligo® E6 Cl
B85 aD 00
gET ng 9
@Y B 0L
ggs 9 20
CB FO EF

CD 38

GE® E9 30
DO 38

pi Eo Do
03 60
D5 D7
Bl - 8O LP
B 0% 5
D8 to FF
FB

FC

FD

i =o w-
100 e 100
130

1C0

153w IFP

03

b7

series pointer

routine copted fEem $BCEE +- Tt is the start
of a subroutine to go through a line
character by character.

INC lo byte of address of character

BNE

INC hi byte if needed

LDA [with a character of the line.

CMP #$38 .is:it-a icolon?

BCS branch is yes, statement done

CMP #$20 1is it a space?

BEQ branch if yes, get anothey icharacter

SEC set carry

BHEC #5790

SEC

SBC #$D0

RTS8 end of subroutine, charact@r in A

used by NSI extended monitor as well as BASIC

random seed

unused by BASIC
monitor load flag
4 data byte
= current -address
ASCII numerals built in this space
NMI interrupt location
IRQ + i , can be overwritten byBASIC
BASIC stack

200
200
201
202
203
204
205
206
=07
207
204
20D
20E
20F
212
213
L
218
218
21A
2ic
21E
220

to 20FE

e 20E
B9 0O DY
99 Qud Dy
c8
60

o 211
00

L8

used to output to the screen and tape
cursor location, initialized to contents of $FFEO
save character to be printed

temporary

L,OAD flag, $80 means LOAD from tape
temporary

SAVE flag, O means not SAVE mode
repeat rate for CRT routine

part of “@srall “reutine

LOA "$D700,Y

STA $D700,Y

INY

RTS

unused

CNTL/C flag, not O means ignore CTRL/C

OD 96 OD OD used by keyboard routine

BAEZ 2

o
used in 600 board machines as follows:
input wvector

output vector

CNTL/C vector

LOAD vector

SAVE vector

A000 - A083
AO8L - A162
Agblh - A185
A1A1

A1CF
A212
A21F
A24C .
A24E
A274
A295
A2A2
A357
A386
R399
A3A6

AL32

AL61
AL77
AL91
ALA7

ALB5
A556
ABF6
A61A
A629
A638
A63A
A661
A67B
A686
A691
A69C
A6B9

49

command jump table

keyword table

ERROR message table

search stack for most recent GOSUB or FOR

routine to open space in program for another line
check stack sigze :

check free memory left

contains ofset from $A164

message out

warm start

tokenize and store in BASIC

delete a line from program

input a liere to input buffer

input a charseter, calle routines ai FFEB
toggles the CTRL/O flag

convert keywords in input line

find program line numbér less than number in $11-12
put address in $AA-AB

NEW routine
initialize
clear stack, reset addresses

initialize program scan pointer to beginning of
program.

1B

FOR routine
execution routine
RESTORE

CHIT,/C routine
STOP

END

CONT

NULL

CLEAR

RUN

GOSUB

GOTO

A6E6 RETURN

A70C DATA

A73C IF

A74F REM

A75F ON

A77F decimal to binary, put asnwer in $11-12

A79B LET

A82F PRINT

AB66 end of input Iine routine, puts out CR and LF & nulls

A8C3 string output routine, address in A,Y (lo, hi)
erid the string with a null

ABE5 output routine, calls $FFEE

A923 INPUT

AQLF READ

AALO NEXT

AAC1 expression handler

ABAC non-numeric expressions

ABD8 NOT

ABFB SN errors

AC66 OR

AC69 AND

AC96 comparison

ADO1 DIM

AD8B create new variables

AEO5 = command

AE17 create new arrays

AFAD FRE

AFCE POS

AFDE DEF

BO8C STR$

B147 garbage collector

B2FC CHR3

B310 LEFT$

B33C RIGHT$

B347 MID$

B38C LEN

B39B ASC

B3AE
B3BD
B4O8

BU1E
B429
B432
B458
BULEF
B5BD
B5FE
B6CD
B7D8
B7ES8

B7F5
B862
B953
BY5E
B962
BY6E

BAAC
BABA
BB1B
BBCO
BBFC
BCO3
BC.A4C
BC99
BCEE
§519 55
BE39
BF2D

ok

arithmetic expression, error if over 255

VAL

floating number in floating accumulator converted
to fixed and put in $r1-12

PEEK

POKE

WATIT

- command

+ command
LOG

¥ command
/ command
SGN

fixed to floating. Tixed in $4D-AF to. floating
in $AC-AF

ABS

INT

output line number

hex in A,X converted to decimal and printed
output decimal value of number (binary) in $AC-AF

build ASCII number in $100-10C from number in
SAC-AF

SQR
~ raise to a power
EXP
RND

ATN

Get character routine, moved to $BC
eoldistart

cold start messages

CRT routine

FEBB-
FEBZ2-
FE@3-
FE@4-
FEBZ -
FEBRS-
FE®C -
FEBE -
FEYE®~
EELZ -
FE14-
EELG-
FEIB=
FELIS-
FE1B-
FEL1D-
EELE-
FEZ2B-
FEZ2-
FEZ24-
FEZ2G6-
FE28-
FEZA-
FEZ2D-
EEZF -
EE3T-
FE33-
FE35-
FE37 -
FE39-
FE3C-
FE3E-
FE4@-
FE43-
FE45-
FE47 -
FE4R-
FE4C-
FE4F -
BESZ -
FES4-
FESG-
FES8-
FESA-

BEESE =

FESE -
FEG@-
FEG2-
FEG4-
FEGE-
FEES-
FEBC-
FEBE -
FE7@-
FE73-
FE7S-
FE7?7-
FE7A-

Az
3R
ne
AD
A9
8D
Az
A9
g5
A9
85
85
A8
A9
i
c8
Da
EB
E4
DB
84
e
2e
(15
Fa
215
Fa

Fe
28
36
Az
28
Bl
85
28
ne
BC
20
CcS
Fe
G
De
ER
juiz}
EB
A8
Bl
85
4
26
36
R2
28
As
S1
28
Da

28

28
EE

FB
FF
FF
FS
FF
13
ES
2F
1E
47
Lr &
ac
43
93
EC
0z
DA
FE
FC
AC
DE
FE
E9
2E
D4
@n
eF
FE
ez
FF
6e
FE
FC
T
a3
El
oo
DA
FC
FE
AC
D3

FE

EE

FE

FE
FE

FE

FE

LD¥
TS
gl
LDA
LA
STH
LDxX
LOA
STA
LDA
s5TR
STH
THY
LA
STAH
INY
BNE
INC
CP¥X
BNE
Sl
BEG
SR
CHP
BEQ
CHMP
BEQ

CMP

BEQ

JSR
BMI

LDOX
JSR
LDA
STA
JSR
BNE
JMP
JSR
CMP
BEQ
cHP

BHE
INC
BNE
INC
LDY
LDA
S5TA
JMP
JSR
BMI

LDX
JSR
LDA
STAR
JSR
BNE

$F BEBE
#$FF
EFBBS
#%L8
#4086
g8FF
%80
$FE
$F B

#2060
($FE, Y

$FEL1E
$FF
$FF
S$FELER
$FF
$FE43
$FEES
#62F
$FE4F
847
$FrE4C
#$4C
$FEYC
FFES3
S$FEZ2A
#$82
$FEDA
(¥FE),Y
$FC
S$FERC
$FEZA
($B@FE)
#FEES
#$2E
$FEZ2AR
$$6D
$FEG9
$FE
S$FEGB.
®FF
L 1515
(SFE2. Y
#FC
$FEYY
$FES3
SFEA4F
4006
S$FEDA
$FC
(SFE),Y
$FEARC
$FE4F

54

MONITOR: inihial Tas

initianlize etsck to £28
clear decimal mode
inttialize UART on 430 board
continue
continue
CLEAR TV SCREEN: X hi byte of end address
A holds hi byte of screen start address
hi byte: current address of screen
lo byte
store
store

get FETCH flag to $00: meahns input Trom kybd
load space char. into A
store space on screen

nexdt
repeat
inecrement hi byte of current screen address
done it 8 times?
if not, branch and repeat
if go, set hi byte of stracn address o 300
branch always to IN: display for $0000

ADDRESS mode (.): fetch char from tape or kybd

il (/)9

if yes, branch to DATA made.f/)

ig 1T (07

if yes, branch and GO: ‘execute program
i e e

Ifmwel, branch and set FRTCH “flag, read tape
J3R to LEGAL:change char. from hex to binary
brench 1T char. 48 illegsal hex digit

roll address in memory

IN: JSR to ROLAD

load A from current address

store in #FC

update screen display

branch always: get next char.

GO: execute program at current address

DATA mode (/): look for keyboard character

a7
if ves, go to ADDRESS mode (-)
is it (RETURN) key?
if no, rell in and display VHex digit
else increment address lo byte
need increment hi byte?
if yea, -do =80
=6t ¥ feor tolling dats
load data from current address in $FE,FF
store data from memory in $FC
JMP to INNER: display on screen, then to(/)
JSR to 1EGAL: convert char. to binary
Brench 1F chgr. was nol lega: licx
prepare to roll DATA nybble into memory
roll one nybble into $FC ($FD also changes)
load current data byte from $FC
store in next spot in memory
THNER: JoR to DISPIAY
branch always to DATA mode (/)

Fe

38
£
1e
38

ES

s
&8
73
=1%]
Az
A
BS
4A

. 4R

4R
4A
28
By
28
CAR
18
A9
8D
8D
=17
29
@9
&35
38
18
69
39
c8
68
(51%]
aA
anA
B8R

F

3u
14
2R
@b
41
an
47
vt

s

aF

(=15}

ez
ae
FC

CA
=E
cA

EE
28
Ch
CB

aF
38
3R
a3

ar
C6

B4

FE

FE

na
%]

Da

STH
BEQ
LD
LR
BCC
LA
NOP
NOP
NOP
AND
RTS
BRK
BRK
BRK
BRK
CMP
EMI

cHP
BMI

CHP
EMI

CHP
BPL
SEC
SBEC
AND
RTS
LDA
RTS
LDX
LDY
LDA
LSR
LSR
LSR
LSR
ISR
LDA
ISR
DEX
BPL
LDA
STA
STA
RTS
AND
ORFA
CHP
BMI

e
ADC
STA
INY
RTS
LDY
ASL
ASL
ASL

#FB
$FE4F
#FCgg

$FESE
$FCEL

#87F

#8268
£$FERY
#¥3A
#FEREB
#8841
£#FERS
*847
S$FEAS

#8567
#E0F

#$808

#4863
#$08
$FC, X

SFECAH
§FC, X
$FECA

$FEBO
#8208

£DaCAH
£DBCE

#8$8F
#$30
#$3A
SFEDS

#8607
$DBCE, Y

#5804

b

store L in GFB, FETCH flae

braneh to. keyboard input if flag &0
OTHER: read tape from ACIA 6850

el TNl of gUHbUl rerlisfer ta O

TR AR Y Hol ready

Tfetch char. from tape

gfr o olf pority b t, Teaving ASUTE ehar,
return

LEGAL: hex to binary conversion, bit 7 set if
bhrgrell ¢ too spmtl for hex error
compare to $3A
Beaneh IF lese than $35: was Hex O to 9
compare to letter "A"
branch if between ASCII : and @
compare to letter "“G"
branch if too large
set-eary bt ‘eher. is B toAF
gubtract to form binary humber
mask off high nybble
return
load A with neg. number for error flag
return

DISPLAY: displays & bytes (eérases 1 byte)
set starting point on screen: $DOC6
byte to be displayed: $FF,FE,FD,FC in order

<ot i
shift
shift
shifh
JSR DISNYB: display hi nybble
reload byte :
JSR DISNYB: display lo nybble
repeat above for next byte
do 4 Dbytes altogether
$20 is space
blank ' owt display:of byte from. $FD
continue
return

DISNYB: display 1 nybble on the screen
AND the hi nybble to zero, add $30 to byte
compare to $3A
eanch T hex 130 to 9
¢glear carry bit: number was 10 fto 15
add 7 to get ASCII letter A to F
store on screen
increment to next screen location
return

ROLAD: roll hex digits into 2 bytes of memory
shift 4 fimes to put lo nybble in & fo

hi nybble in A

FEDF -
FEE@-
FEE1-
FEE3-
FEES-
FEEB-
FEES-
FEES-
FEEB-
FEED-
FEF@-
FEF2-
FEFS-
FEF8-
FEFS-
FEFA-
FEFC-
FEFD-

Baa
2A
36
36
88
Do
(=15]
RS
na
4C
Ag
8D
AD
66
ER
38
aa
FE

EC
FD

F8

FB
g1
e
FF
oo
o

@l

ca

ASL
ROL
ROL
ROL
HEY
BHE
RIS
LDA
BNE
2 JMP
LDA
DF SR
DF LDAR
RTS
NOP

al

$FC, X
$FD, X

$FEE®

$FB

$FEYE
SFLeg
#BFF
$DF 2@
$DFBe

56

et lE st to G

roll next memory
roll next

nexd
dio- Ber=4-bits
return

FETCH: fTirst check FETCH Ilag

1f not vero, resd.lirom tape
was zero, jump to keyboard (RTS from there)

LOOK: looks for any keystroke

strobes all rows of keyboard at once
records which col.s had keys down
return

Here are 3 addresses left over from when

thig code was in page $FF and these were
interrupt addresses

Changes from the above for a C1 machine: page $FE.
Streen sige is-shaller

FEOC A2 D&
FEEB DO 93
FEFO BA FF

FFEO
B
B2
E6
EA

FEER

69 FF
9Bl
8B FF
96 FF

jump table read into page $02 from
support ROM program

(Changes on page $FF for C1 and Superboard II machines,

continued from last page.)

$67
$17
$00
$OF
$OF
$6C
$6C
$6C
$6C
$6C

18
1A
1C
1E
20

02
02
0z
02
02

A

FFrag-
FFB1-
FFEz-
FFa4-
FFa7-
Freg-
Froc-
FFGF -
FF12-
FF15-
FF18-
FF1B-
FF10-
FFz2a-
FF23-
FF26-
FF29-
FF2C-
FF2F -
FF32-
FFa5-
FF36-
FFag-
FF2B-
FF3D-
FF40-
FF41-
FF43-
FF45-
FF48-
FF4A-
FF4D-
FF4F -
FFS1-
FFS4-
FFS6-
FFSg-
FFSA-
FFSB-
FF5C-

FF5F

FFE7-
FFEA-
FFEB-
FFBE-
FF7@-
FF71-
FF74-
FF76-
FF78-
FF79-
FF7A-
FF7B-

28
48
AD
Fe
68
28
cH
Da
48
8Aa
48
AZ

o
Gy

=3
bt B

e o ¢ ey
- e}

@6
E@
ag
2¢
1o
on

9 ae

(G 1%]
ag
Ba
(G1%]
115

ES
SE
8t
2D

FS
B8
40
83
ae
L
83
515}
43
(Rl
(5%

11

2

2D

5153
e

I

an
1B

BA

cLl

LD

HG

BF J5RE
LY

2 5Ty
5 6 STY
=z 5TY

%Vl ST e
FE LGA
@z STA
LDA

oy SR
bE S5IR
s STR
D4 STA
b3 SThA
B2 51
Iy STA
D@ STA
INY

BHNE

EE LEA
BEQ

BF ISR
INY

BNE

FF JSR
ZHP

BNE

FE JMP
By

BHE

(% 1%] IMP
cHMP

BNE

LDR

TAA

TAY

BD JHP
5% 2B 4p
W M

BF JSKE
PHA

az LDA
BEQ

PLA

BF JSR
CHMP

BNE

PHA

TXA

PHA

LDX

o5

SUPPORT ROM: clear decimal mode
#8265 initialize estack to $28
continue
$BF 22 initialize 6850 ACIA
'S Tl initiaifze some page $02 flags, efc.
$021Z o
#8283 iy
$EZES ¥
#6205 2
$FFE@ initizlige curser positian
$6200 '
#8520 $20 ‘istagpace”
$07EBB,.Y clear screen
s0s8a, Y i
sosea, Yy o
#0400, Y &
$0288, Y A
sp268, Y "
$D168.Y .
£0B06, Y ¥
$FF1D !
$FFSF,Y write "C/W/M ?" on screen
BFF43 branch if reached null at message end
$EBF 2D Jok to ERT routine in BASIC
next letter of message
§FF38 continue
$FFE8 3R IRPUPY Tetch char. from tape or keyboard
#3540 is it (M)?
$FF4D 2o no, “brarch
SFEBE if yes, JMP to MONITOR
8§57 dgr 1 EVL Y
€FFS4 1f moe, ; braneh
€£AEEA if yes, JMP to BASEC warm start
#8423 i L0106
sFFan if no, branch and seek new key stroke
#8000 if yes, set registers to zero and
$BD11 JME o . BASTE cold skart
20238 00
?
$EEZD. GUIRYT: “char, to fape and TV screen
save char.
#0285 teaf for SAVE flag
$FFS2 if not save, branch, PEA and return
pull char. from stack
$BF 15 go write char. on tape
#$0D was char. a CR?
$FF33 if ne, bramech and return
if yes, push char on stack
save Fronightack teo
#80A $0A=10

58

FF7YO- A9 2d LDA #%0@ write 10 nulls on tapes load A with 10
EEVE- 28 15 BF JER $BF15 go write a null on tape

FFB2- CA DEX repeat 10 times

FF83- DB FA BNE SFF7F done?

FFa5- &8 PLA yes, Trecover A, - %

FFBE- AA TAX 4

FFg7- 68 PLA 4

FFee- 68 RTS return

FFBQ- 48 PHA LOAD flag: set LOAD flag, reset SANE flag
FFeEA- CE 83 82 DEC #8283 set LOAD flag: load enabled

FFBD- A8 BB LDA #4060 null in A to reset SAVE flag, disable SAVE
FFBF- 8D 85 B2 STA $B28S SAVE flag

FF9z2- (S35] PLA recover A from stack

FF93- 668 RIS return

FFS4- 48 PHA SATE: sets SAVE flag

FF95- A9 81 LDA #$01 $01 for set SAVE mode

FFS7- D8 F6 BNE $FFGF branch always

FF99- A0 12 82 LpA #8212 (CTRL/C) routine: checks for (CTRL/C) break
FF9C- D@ 19 BNE $FFB7 18 CTRIJE) Tlag in 20288 ia set, Poturn
FFOE- AS @1 LDA #%081 strobe row 1 of keyboard

FFAB- 8D 8@ DF STA $0FOB n

FER=- 2C 88 DF HI} sDFea check for CTRL key depressed

FFAG- 5@ ar BUC $FFBY if-matl,: Branch andareturn

FFAB- A9 B4 LDA #8084 strobe row 4 of keyboard

FFARA- 80 @8 DF STA $DFOG s

FFAD- 2C 88 DF BIT SDF@6 check if key (C) is depressed

FFEBB- 58 @5 BUC SFFR7Y 1f mot;: branch and:return

P - o s LDA #$83 if so, . load A with 3 and jump to BASIC
FFE4- 4C 36 A6 JMP $AG36 1

FFB7- 6@ RTS return

FFBB- 2C B3 @2 BIT #8203 INPUT: read tape and/or keyboard

FFEBB- 18 19 BPL SFFDB branch if LOAD is disabled: JMP to keyboard
FFEIl- A5 B2 LDA #$82 poll row 2 of keyboard

FFBF- 8D 88 DF STA $OFB0 i

FFC2- A9 1@ LDA #8510 eheck-eol. .5 of keyboard

FFC4- 2C 88 DF BIT $DF@@ was 11 "spsce bar"

FFC7- DB @A BNE $FFD3 if yes, branch to disable LOAD and go to kybd
FFCS- AD 88 FC LDA sFcee if me, cheek status-of 6850 AGIA

FFCC- 4A LSR "

FFCD- 98 EE BECC $FFBD branch if data 1s not yet ready

FFCF- AD Bl FC LDA s$FCBe1 else load char. from ACIA to A

FFO2- 6B RTS return

FFD3- EE 83 82 INC $8283 disable LOAD flag

FFDG6- 4C ED FE JMP $FEED JMP to keyboard, get char.

FFDa- @8 BRK

FFDA- @8 BRK

FFDB- 808 BRK

FFOC- @8 BRK

FFDD- ©@ BRK

FFDE- 08 BRK

FFOF- @@ BRK

FFEB- 48 cursor home

FFEy- HF line size

FFEZ- @1 machine type: C1 is zero, C2 one

FFLE3-
FFE4-
FFEG-
FFEE-
FFE7-
FFES-
FFES-
FFEA-
FFER-

FFEE-
FFF1-
FFF4-
FFF7-
FFFA-
FFFC-
FFFD-
FFFE-

BFrA7 -
BFGA -
BF@B-
BFen-
BF 18-
BF17-
BF14-
BF 15-
BF16-
Br19-
BF 13-
Bf 1B-
BFin-
-
BF21-
B 22-
BF24-
BF27 -
BF 29 -
B 2C-

@
az
FF
3F
eo
@z
FF
3F
4C
4c
4C
4C
4c
28
@@
FF
ca

&0
4R
398
Al
Fa
29
=15}
48
AD
48
46
S8
68
80
(S1%]
A9
8D
Ag
80
cB

67
55
89
34
ai

FF
FF
FF
FF
FF

ai

aa

FA
81
FS

7F

a8

ES

B1

B3
(5]%]
Bl
%1%}

EC

EC

EE

FC

FC

59

ImpP SFFBE INPUT
JMP $FFB7 OUTPUT
IMP $FF99 (CPRE A0

FME ~ $FE8S LOAD flag set
IJMP SFF94 SAVE flag set
BMI $FFFD NMI address, non-maskable interrupt

restart address

"

“address for maskable interrupt

LDA $Fce@ TADPY PORT, INPUT: 6850 ACIA

LSR move receive data flag to C

BCC $BFay brapeh 1 data not ready

LDA $rcal else lozd data info A

BEQ $EF QA7 branch for more data if data was a null
AND #$7F glae AND off the bit 7

RTS return

FPHA TAPE PORT, OUTPUT: 6850 ACIA .

LDA $FCEB after saving data in A, loadstatus register

LSR shitt hwiee to put Imit data flee In ©
SK

BCC $BF 16 branch if ACIA not ready

PLA else pull data into A

STA $FCBl send to ACIA

RTS return

LoA #8883 ACITA 1Mt ializetion
STA $Fcee perform master RESET of ACIA

LDA #$B1 load ACIA contrel register for
STA $FCO0 8 bits, no parity, 2 stop bits
RTS enable receive interrupt logic:return

Page $FF in C1 and Superboard II machines is like that in the

C2-U4P except where noted below.

FFO4

FFOF
BEL2
BF 35
EF55
FF69

FF8B
FFOB
FFBA

OD

34
R
68
8A

L
B9
DA

load jump tables from FEOF to page $02

initialize ACTA using routine at FCAG

initialize page $02 and clear screen

similar to FR38 onward of C2-4P

faple- 26 W M D 7 nulild

like OUTPUT of C2-4P at FF67 - 88 except write on
tape at FCBl, not EF15

LOAD and SAVE

(CTRL/C) routine like C2-4P at FF99 - B7

INPUT, C1 keyboard is inverted from that of
C2-4P, ACIA is at FOOO

B A oo T S e e R W .

