# TABLE OF CONTENTS | SE | CTION | PAGE | |-----|----------------------------------------------------|------| | | WARRANTY CARD | | | | GENERAL INTRODUCTION | | | 3. | UNPACKING INSTRUCTIONS | 6 | | 4. | CONNECTING YOUR UNIT TO THE VIDEO DISPLAY | 9 | | 5. | CONNECTING THE UNIT'S FLOPPIES OR CASSETTE SYSTEM | | | 6. | START THE MACHINE | 12 | | 7. | RUNNING A "CANNED" PROGRAM | 15 | | | A) Loading Cassette Programs | 15 | | | B) Loading Disk Programs | 16 | | | RUNNING BASIC | | | 9. | GRAPHICS | | | 10. | SOUND | 27 | | 11. | EXTERNAL STORAGE OF PROGRAMS | 29 | | | A) Cassette Storage | | | | B) The PICO Disk Operating System | 30 | | | C) The OS-65D Disk Operating System | | | 12. | ADVANCED FEATURES | | | | A) Lower Case | 36 | | | B) Keyboard Programmability | | | 13. | PRINTER COMMUNICATIONS | 41 | | | A) BASIC-in-ROM—Printer Use | 41 | | | B) 9-Digit Extended BASIC under OS-65D-Printer Use | 41 | | 14. | MODEM AND TERMINAL COMMUNICATIONS | 43 | | 15. | JOYSTICKS AND KEYPADS | 44 | | | A) Joysticks | 44 | | | B) Keypads | 48 | | 16. | AC REMOTE CONTROL, SECURITY | 50 | | 17. | PARALLEL I/O | 51 | | 18. | CONNECTION OF 16-PIN BUS DEVICES | 56 | | 10 | ADVANCED FEATURES | 60 | ### **APPENDIX** | 1. | COMPUTER GLOSSARY6 | 14 | |-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----| | 2. | BINARY AND HEXADECIMAL | 6 | | 3. | HEX-DECIMAL CONVERSION TABLES | ·C | | 4. | MEMORY MAPS | 4 | | 5. | CONTROL REGISTERS | 7 | | 6. | OS-65D SUMMARY7 | 3 | | | ERROR MESSAGES8 | | | 8. | FLOPPY DISK CARE | 3 | | 9. | CHARACTER GRAPHICS AND VIDEO SCREEN LAYOUT | Ç | | 10. | POKE LIST-C1P DISK BASIC9 | 6 | | | INDEX | C | | | | | | | TABLE OF FIGURES | | | | | | | FIC | GURE PAGE | Ε | | 25 | A) Catherin Storage Lawrence or contract the contract of c | | | 1. | REAR PANEL OF THE C1P SERIES 2 COMPUTER | 7 | | | | | | | CHALLENGER 1P AND SUPERBOARD II VIDEO CONNECTIONS | | | | C1P CASSETTE RECORDER CONNECTIONS | | | | SUPERBOARD II CASSETTE RECORDER CONNECTIONS | | | 6. | OPERATION INSTRUCTIONS—OSI POLLED KEYBOARD | 3 | | 7. | VIDEO MEMORY MAP-24x24 FORMAT | 1 | | 8. | VIDEO MEMORY MAP-24x48 FORMAT | 2 | | 9. | DIRECTIONS FOR FOR-NEXT LOOP INCREMENTS | 5 | | 10. | SWITCH MATRIX-C1P POLLED KEYBOARD | 7 | | 11. | DECIMAL VALUES RETURNED BY THE JOYSTICKS | 1 | | 12. | JOYSTICK | 5 | | | CHARACTERS USED IN JOYSTICK ARROWS | | | | FLOWCHART FOR JOYSTICK ARROWS | | | | KEYPAD A | | | 16 | KEYPAD B | 7 | | | COLOR MEMORY MAP | | | | 00±011 IIIAF | J | # GENERAL INTRODUCTION Ohio Scientific's Challenger 1P line is the most economical of the Ohio Scientific family of microcomputers. In spite of its economical price, the C1P includes many deluxe features usually found only in more expensive systems. The standard model Challenger 1P features BASIC-in-ROM and is an attractive fully packaged personal computer ready to run as delivered. The basic Challenger 1P Series 2 includes a standard audio cassette interface and is capable of sound, music and voice output via a built-in digital to analog converter. The basic system can be easily and economically expanded to include up to 32K of RAM memory, dual mini-floppy drives, printer, modem, and color display. The C1P Series 2 personal computer is specifically designed for the first-time personal computer user and for use in educational environments. Its advanced features allow a wide range of home applications including, for example, the following. ### PERSONAL OR HOME COMPUTERS Challenger 1P's advanced character graphics, noise-free display, programmable keyboard, and extremely high speed BASIC make it capable of spectacular video displays, cartoons, animated advertisements, and elaborate computer games. Ohio Scientific offers an extensive library of one and two player video games very similar to conventional arcade games as well as a standard complement of computer-type games. Ohio Scientific's software library also includes examples of cartoons, advertisements, and educational games which make extensive use of graphics and programmable keyboard inputs. The computer's fast program execution makes such applications a snap to program. ### PERSONAL FINANCES Challenger 1P's floating point decimal arithmetic capability in conjunction with its cassette storage abilities make it practical for many forms of personal financial aid and analysis. Ohio Scientific's cassette library includes a check book balancing program, savings account program, and annuity and loan analysis programs. Budget planning aids include home ownership cost analysis and expense accounting. A complete home budget system is available for use on the C1P MF Series 2 disk system. Demonstration programs provide personal calendars, phone directory, address book, and other personal services such as dietary analysis. It should be pointed out that a mini-floppy disk is a practical necessity for some of the advanced applications mentioned above. These capabilities can, however, be effectively demonstrated on a cassette system. As in all applications, the ease of programming in BASIC, along with the convenient features of decimal arithmetic capability and cassette storage, make user-generated applications in these areas easy to program. # SCIENTIFIC CALCULATIONS AND ADVANCED MATHEMATICAL ANALYSIS Challenger 1P's BASIC has full advanced arithmetic capability, including trigonometric functions, logarithms, exponentiation, and full scientific notation. These features are available in the immediate mode of operation as well as the stored program mode. For instance, a user can quickly turn the computer on, type in an equation as a single line, and press return to get an answer. The computer can double as an advanced scientific calculator with much greater ease of use than any available calculator. The program storage and alphanumeric capability of the Challenger 1P make it extremely valuable to engineers, students, and educators for solving scientific, engineering and mathematical analysis problems. Ohio Scientific's cassette library includes several advanced mathematics oriented programs including a programmable calculator simulator and a mathematical function library. The library also includes applications programs such as definite integrals, statistical analysis, and other complex mathematical functions. In general the Challenger 1P will be hundreds of times faster than the most powerful scientific calculators in "number-crunching" applications. ### **EDUCATION** Challenger 1P series personal computers are extremely versatile in educational computing applications. Once the user gets involved in the educational applications of these machines, he will quickly consider computers a necessity in the educational process. Young children from kindergarten to grade six are especially attracted to computers. As the child's reading ability develops they quickly master the elementary operations of the computer. It is not at all unusual for six year old children to respond to mathematical problems on a personal computer. Children's natural fascination with computers in conjunction with the 1P's cartoon-like interactive capability make the computer highly valuable in a modern educational environment. Programs which teach, tutor and drill students in virtually all areas of education can be easily programmed on the Challenger 1P system. Ohio Scientific has a full library of several types of educational games which can be used as an example in programming such applications. These programs range from a simple "Sesame Street" type arithmetic cartoon through mathematical drills, to word games such as "Hangman" where the gallows, noose and person are actually constructed graphically on the screen as the child attempts to guess the letters of a word. Another broad area of education is in teaching computer fundamentals. The Challenger 1P utilizes the most popular upper level language, BASIC, in a very complete and concise implementation. With the Challenger 1P the user can teach or learn BASIC in conjunction with any of the common available text books on the BASIC programming language. The 1P series machines have full machine code accessibility including the machine code monitor so that advanced students can enter, edit and execute machine code programs. A very fast and interactive assembler/editor is available to run on Challenger 1P machines so that students can be introduced to the concepts of assembler programming and editing. ### **ADVANCED APPLICATIONS** There are many other applications of the basic 1P machines that have not been mentioned here. The Challenger 1P MF system provides the user with the extra convenience of virtually instantaneous loading and storing of programs on mini-floppy disks. The addition of a mini-floppy disk drive to the Challenger 1P also provides convenient construction and access of data files. Using the file capabilities of the C1P MF, an educator can develop an interactive textbook with a quick access data base for any educational topic. In the home, the data file operation of the mini-floppy makes the Challenger 1P a deluxe personal service computer giving the user easy access to phone numbers, personal calendar, addresses and other file-type information. The Challenger 1P is available in an uncased version as the Superboard II. For a personal computer enthusiast on a limited budget, the Superboard II offers nearly all of the features of the basic Challenger 1P at a fraction of the cost. Setting up a Superboard is discussed in section three. Essentially all that is required, other than a little time, is a 5 volt @ 3 A (minimum) regulated power supply and an AC/DC voltmeter. As with the standard Challenger 1P, the Superboard II includes both a standard audio cassette interface and a video display interface. The remainder of this section gives an overview of the Challenger 1P system. Although the presentation is reasonably nontechnical, it uses several terms which are part of the standard vocabulary of computers. The meanings of many of these terms will be clear from the context in which they are used. Appendix 1 includes a computer glossary which summarizes the meaning of most of these technical terms. Like all small computers the Challenger 1P is made up of several modules. The most important of these, the microprocessor, forms the heart or CPU (Central Processing Unit) of the C1P system. This microprocessor is an integrated circuit much like those used on digital watches and calculators. It performs all of the logical and arithmetic operations required by the computer. The Challenger 1P system is based upon the 6502 microprocessor. In addition to the microprocessor, any computer system requires memory for storage of data and programs and input/output (I/O) devices to allow it to communicate with the user. Memory in a computer can be thought of as a collection of post office boxes each having a specific address or box number. The addressing scheme used by the Challenger 1P system is discussed in Appendix 2. Two basic types of memory are present in the C1P. They are referred to as ROM (for Read Only Memory) and RAM (for Random Access Memory). Each memory location (post office box) can contain one piece (or BYTE) of data at any given time. The numeric value of the data at any memory location is restricted to the range $\emptyset$ to 255. This restriction arises from the fact that each BYTE is eight BITS (binary digits) in length. Appendix 2 gives a brief introduction to the binary and hexadecimal number systems. When the microcomputer is operating, it can read (or PEEK) the contents of the memory location or it can write (or POKE) a new value into a memory location. The contents of ROM memory is preprogrammed and unchangeable by the user. Thus the user can read (or PEEK) the contents of ROM memory but cannot POKE a new value into ROM memory. All models of the Challenger 1P line include BASIC, the most commonly used programming lan- guage, in 8K (K is an abbreviation for kilo, for computers 1K = 1024 bytes) of ROM. RAM memory provides modifiable storage comprising the workspace, that is an area in memory where programs and data can be written in and read out repeatedly. Generally, RAM, "forgets" (is erased) when the power is turned off. The simplest means of communication between the user and the C1P is via the keyboard and the television or video monitor. Sections three through six describe setting up and running your C1P using only keyboard input and the video display. The conventional computer style 53-key keyboard supports both upper and lower case characters. Each key has full automatic repeat. Holding down any key transmits first one character and then, after approximately a half second delay, a repeat factor of five characters per second. The keyboard of the Challenger 1P series is a polled or software scanned keyboard. This allows the user to program individual keystrokes for specific functions. This feature, which is described in detail in section twelve, is especially useful in real time video game applications. The built-in video display interface is capable of generating 256 distinct characters including upper and lower case letters as well as graphics and gaming character elements. The display format is 32 rows × 32 columns of 8 × 8 dot or pixel characters, but due to the overscan present on normal television equipment you will actually see 24 rows × 24 columns. The Series 2 models in the Challenger 1P line feature a program selectable 12 row × 48 column character display option. Section nine includes a detailed discussion of the character display capabilities of the Challenger 1P system. All models in the Challenger 1P line include a high reliability audio cassette interface allowing inexpensive cassette storage and playback of programs. The procedures for cassette storage and playback of programs are de- scribed in detail in sections seven and eleven. All Challenger 1P cassette based computers come with a demonstration library on cassette (the C1P sampler) which gives the user some insight into the capability of the computers. This demonstration cassette contains six programs which demonstrate various aspects of personal computing. The cassette includes an advanced video game called "Star Wars" which runs in real time, a check book balancing program, a mathematics skill drill for children, and an example of an educational program. Also included are "Counter" which is designed to be a child's first introduction to a computer, and a sample of a tutor program called "Trig Tutor" which shows the use of graphics in tutoring complicated concepts. Ohio Scientific offers a full library of very economical cassette programs for the Challenger 1P system. The standard cassette based C1P Series 2 has 18K total RAM/ROM with 8K of workspace. Although the workspace can be expanded to 32K, 8K is a practical upper limit for cassette based computers because of the load time for programs from cassette into an 8K workspace. As the user upgrades to 20K of RAM, he will find it desirable to convert his system to a mini-floppy disk based system. The C1P MF is a standard C1P with a 61Ø floppy disk and memory board, an extra power supply and a single mini-floppy. A cassette based C1P can be expanded to a C1P MF at a total cost just slightly more than purchasing a C1P MF outright. The C1P MF is supplied with 30K total RAM/ROM, a single 90K byte fast access mini-floppy and two disk operating systems. PICO DOS allows the operation of ROM BASIC and cassette originated programs on diskette. OS-65D is a powerful business and development oriented system with 9-digit BASIC by Microsoft. OS-65D also supports an optional interactive Assembler/Editor, an optional text editor and both random access and sequential data files. The use of these two operating systems on the Challenger 1P is discussed in section eleven. With the C1P MF system, the user can load and run programs from diskette in a fraction of a second. Ohio Scientific offers a wide range of educational, personal, entertainment and small business software on diskette. Ohio Scientific also offers "OS-MDMS," a mini data base management system, for use on the C1P MF. This data base management system allows the user to store collections of information on diskette for instant recall without requiring any programming knowledge. Generally, Ohio Scientific floppy diskette software is much less expensive than cassette software simply because of the much lower cost of mass duplicating diskettes. For instance, a typical Ohio Scientific applications mini-floppy will have ten programs on it and cost a fraction of what the individual programs would cost if purchased separately on cassette. If a large software library is contemplated, the mini-floppy system will not only provide much faster program LOAD and SAVE capabilities but will also be more cost effective than purchasing a large number of audio cassettes. The 630 I/O Expander board is available for addition to either the C1P or C1P MF. This board provides the C1P with the state-of-the-art in input/output capabilities rivaling the most expensive small computer systems available today. This board allows easy interface with joysticks, remote keypads, AC remote control units, home security system and more. It also substantially enhances the video display capabilities of the Series 2 models in the Challenger 1P line by allowing the display of up to 16 colors with any of the standard 256 graphics characters. The features of the 630 I/O Expander board are described in sections fifteen through nineteen. ### UNPACKING INSTRUCTIONS This section details the procedures to be followed during the unpacking and assembly of a Challenger 1P system. The instructions given here are intended to supplement the introductory manual supplied with each computer. Your Challenger 1P system is shipped from the factory in a carton designed to provide maximum protection from damage in transit. Nevertheless you should inspect the box carefully for signs of rough handling such as punctures or crushed sides. If there is external evidence of damage, check the contents of the box carefully. (If possible without removing the equipment.) If the contents have sustained damage notify the carrier immediately. The system should be unpacked carefully and all packing material should be saved. These materials may be needed later to transport or ship the system. If your system is diskette based, remove and save the dummy cardboard diskette which protects the disk head from damage during shipment. This dummy diskette should be saved to be used later if the system is shipped or transported. Assembling a C1P system requires essentially the same precautions as hooking up a stereo system. Although the Challenger 1P is a relatively rugged solid-state device, it may be damaged if you fail to observe power supply, accessory or safe operating requirements. As with all electronic equipment, it is recommended that you take time to read all the instructions carefully before you turn on the computer. Once you are familiar with these procedures, you can explore other areas of personal computing at your own pace. Figure 1A is a diagram of the rear panel of the standard model of the Challenger 1P Series 2. This diagram will be referred to repeatedly throughout sections three through fourteen. If your Challenger 1P Series 2 is equipped with the 630 I/O Expander board then the rear panel will appear as in Figure 1B. Sections fifteen through nineteen will frequently refer to this diagram. # POWER SUPPLY-CHALLENGER 1P The Challenger 1P requires a three-wire grounded 110V outlet. Although adapters are readily available which allow plugging a three prong plug into a non-grounded two-wire outlet, such an adapter m-u-s-t n-o-t be used unless you run a ground from the frame of the computer to a good ground such as a cold water pipe. This will insure that the computer's cabinet is thoroughly grounded and will protect both you and the computer from possible damage or shock. # POWER SUPPLY-SUPERBOARD II The Superboard II requires a 5 volt @ 3 A (minimum) regulated power supply with a +-5% maximum ripple. Reasonable care must be exercised when working with the Superboard II. Your work area should be clear of paper clips or other conductive material which might accidentially contact the foil on the board. The board should not be flexed or bent. Figure 1A: C1P Series II Standard Rear Panel Figure 1B: C1P Series II Rear Panel With 630 I/O Expander Board Figure 2 illustrates the following sequence of steps involved in connecting a Superboard II to a power supply: - With the power supply unplugged, connect the RED and BLACK wires from the Superboard to the + and terminals of the power supply. - 2. Attach an AC/DC multimeter to the terminal of the power supply and set the multimeter to a DC range which will accurately measure 5 volts (a range of Ø-6 volts or Ø-1Ø volts should be acceptable.) - 3. Briefly turn on the power supply. The "ON" light (a red LED) should glow. If it does not, then turn off the power supply and check your connections to make sure they are not reversed. - 4. Again turn on the power supply and measure the DC voltage. The reading should be between 4.8 and 5.2 volts. If the reading is less than 4.8 volts, then your power supply is probably inadequate. If the reading is greater than 5.2 volts, then it may damage your board. Turn off the power supply—immediately. - 5. Without changing the connections, set the multimeter to measure an AC voltage of approximately Ø.5 volts (you will probably need to use the lowest AC range on the meter). - 6. Turn the power supply on and measure the AC voltage. This reading measures ripple and it must not exceed $\emptyset$ .2 volts AC. When the power supply has been successfully attached to the Superboard II and tested, you are ready to proceed to Section four which discusses the interface of the computer with a video display. Figure 2: Superboard II Power Supply Connections ### CONNECTING YOUR UNIT TO THE VIDEO DISPLAY The first step in assembling your Challenger 1P computer system is the interface of your computer with a video display. This section describes two possible methods of making this connection. Figure 3 illustrates these two methods of attaching a video display to the Challenger 1P or Superboard II. The top (or top left) RCA jack on the back of the C1P carries the video output signal from the C1P. This signal can be transmitted to either the high impedance (HI-Z) input of a closed circuit television video monitor (such as the Model AC-3 12" video monitor available from Ohio Scientific) or an RF modulator for display on a standard television. Three cables are provided with the Challenger 1P Series 2 for the audio and video connections. The Superboard II is supplied with a wiring harness which provides connections for video output and cassette input/output. This harness should be attached as indicated in Figure 3. With a closed circuit video monitor such as the Model AC-3, use the cable supplied with the C1P to connect the video output jack on the back of the C1P directly to the video input jack on the back of the monitor. On monitors other than the AC-3, if there is a high impedance-low impedance selector switch or two or more inputs follow the monitor manufacturers instructions. With a standard television, use the cable supplied with the C1P to connect the video output jack on the back of the C1P to the "video in" port of a video-to-RF interface modulator and follow the manufacturers instructions supplied with the modulator. Figure 3: Challenger 1P and Superboard II Video Connections # CONNECTING THE UNIT'S FLOPPIES OR CASSETTE ### **SYSTEM** All models of the Challenger 1P line of computers, including the Superboard II, include an audio cassette interface. This interface allows a standard audio cassette recorder to be used for program storage and playback. Although cassette I/O is not as convenient as disk I/O, it provides an inexpensive means of building a permanent library of programs. Moreover, a large library of applications software is available on cassette from Ohio Scientific through your local Ohio Scientific dealer. Any good quality cassette tape recorder may be used for program storage and playback. Two cables are supplied for connecting the C1P Series 2 to a cassette recorder. Each of these cables has a small microphone plug on one end to plug into the cassette recorder and an RCA phono plug on the other end to plug into the rear panel of the C1P. The wiring harness supplied with the Superboard II includes two cables for connecting the Superboard II with a cassette recorder. Figures 4 and 5 illustrate the connections necessary to attach a cassette recorder to a Challenger 1P and to a Superboard II. The selector switch on the rear panel of the C1P Series 2 must be set to the left (see figure 1A) for cassette I/O. The placement of the microphone and audio output jacks on the cassette recorder may vary with different brands. The tape recorder should be plugged into an AC outlet, not run on batteries. The volume and tone controls of the cassette recorder should be set at mid to high range. The Challenger 1P MF is shipped from the factory with the mini-floppy disk drive already attached. Other than removing the dummy cardboard diskette as described in section three, these systems are ready to operate once the connection to a video display has been made. The C1P disk upgrade kit contains all necessary documentation. Figure 4: C1P Cassette Recorder Connections "MIC" CABLE (TRANSMITS COMPUTER TO RECORDER AUDIO INPUT.) Figure 5: Superboard II Cassette Recorder Connections ### STARTING THE MACHINE Once the power supply and video display connections have been made, the computer should be ready to run. If, after you have connected everything and turned on the computer and monitor or television, you do not see a screen filled with random graphics characters, then you should turn off the power and review all hook-up procedures and check your connections carefully. As has been indicated, the Challenger 1P has the programming language BASIC permanently stored in ROM memory. The remainder of this section consists of an introduction to the use of ROM BASIC. If, at any time, the computer or television/monitor does not respond as indicated, turn off the power to both and carefully repeat each of the preceding steps. Figure 6 is a sketch of the keyboard on the Challenger 1P. Several keys or key combinations have special uses on the Challenger 1P system. These special keys are summarized in this figire. NOTE: THE SHIFT LOCK KEY MUST BE LATCHED IN THE "DOWN" POSITION BEFORE THE MACHINE CAN BE RESET AND BASIC CAN BE ENTERED. Several of the instructions for bringing up BASIC contain words or letters which are enclosed by brackets "<" and ">", such as <BREAK> and <C>. The brackets indicate that a keyboard key labeled with the letter or word must be pressed. Do not type in the word contained between the brackets letter-by-letter. The following sequence of instructions will bring up BASIC: - 1. Turn on the computer. - 2. Turn on the television or monitor. After a short warm-up the screen should be filled with random characters. The C1P Series 2 will come up with the prompt message automatically. - 3. Depress <BREAK> until the prompt or D/C/W/M? appears in the lower left corner of the screen. This will take a few seconds on Series 2 models. - 4. Press <C> (for Cold Start). The screen will scroll up one line and ask MEMORY SIZE? The responses <D>, <W> and <M> are discussed later in this section. - 5. Press <RETURN>. The screen will scroll up another line and ask TERMINAL WIDTH? - 6. Press <RETURN>. The computer will reply: XXXX BYTES FREE OSI 6502 BASIC VERSION 1 REV. 3.2 COPYRIGHT 1977 BY MICROSOFT CO. OK The response <C> in step 4, above causes an initialization of BASIC-in-ROM to take place. When this initialization is completed, the text listed in step 6, above will be displayed. The line XXXX BYTES FREE informs the user of the size of the workspace. The value of XXXX depends upon the memory size of the individual computer. A typical 8K machine should give a response of 7423 BYTES FREE. The prompt OK displayed at the end of the above sequence of instructions is a signal to the user that the computer is in the BASIC or immediate mode and is awaiting input from the user. - 1. <>-Brackets-Instruct user to press key whose label is contained between the brackets. DO NOT type in word between brackets. - 2. SHIFT LOCK—latching Key—Must be in the locked (depressed) position before BASIC may be entered; or capital letters, numerals, etc., may be entered. - 3. <BREAK>—Places computer in the "RESET" state any time after system is powered up. Hold for several seconds. - 4. C-May be pressed after <BREAK>. Initializes computer and clears system RAM. - 5. W—May be pressed after <BREAK> except when computer is first powered up (C must be used). Initializes computer, DOES NOT clear system RAM. Any programs in RAM are preserved. - 6. M—may be pressed after <BREAK>. Initializes computer, clears system RAM. Computer enters machine language monitor. See 65V Primer for detailed information. - 7. <SPACE>—provides a space when pressed. - 8. <RETURN>—Must be entered after a line is typed. Typed material is then stored in program memory space. - 9. <SHIFT O>-Press <SHIFT> first, add <O>-erases from memory, last character typed. - 10. <SHIFT P>—Press <SHIFT> first, add <P>—erases from memory, current line being typed. Provides a "@" carriage return and line feed. - 11. <CONTROL C>—Press <CONTROL> first, add <C>. Program listing or execution is interrupted, "BREAK IN LINE XXX" is printed. - 12. $\langle SHIFT N \rangle$ -Press $\langle SHIFT \rangle$ then $\langle N \rangle$ , yields $\Lambda$ -used for exponential notation. - 13. RUBOUT-is not used. Figure 6: OSI Polled Keyboard One of the automatic steps in the initialization procedure is the clearing of a region of memory designated as the workspace. This region is used by the computer to store programs written in BASIC. Programs can be entered into the workspace in several different ways. The user can enter a BASIC program directly through the keyboard or from an external storage device such as a cassette tape. The method of entering a program into the workspace is strictly a matter of convenience. Once a program has been entered into the workspace by any means, the user can list the program, make corrections or additions, run the program or store the program on an external storage device if desired. A program entered into the workspace remains there until it is removed. The command NEW can be used to clear the workspace, or erase the program, and allow the entry of a new program. If the power to the computer is turned off, then the program is lost. If the user depresses the <BREAK> key for a few seconds then the prompt or D/C/W/M? will be displayed on the screen again. If the user depresses <W> (for warm start) then the computer reenters BASIC and the contents of workspace are retained. On the other hand, if the user depresses <C> then a cold start is performed and the workspace is cleared. Section seven will describe how to LOAD and RUN "canned" programs (programs previously written and stored on an external storage device). Section eight will describe the entry of programs directly through the keyboard. Sec- tion eleven will describe the techniques involved in the storage of programs on cassette or diskette. There are two possible responses in step 4) above which we have not discussed yet. These are <D> and <M>. The response <D> is used with mini-floppy disk based versions of the Challenger 1P, such as the C1P MF, to select the disk. Section eleven will discuss this option in detail. The option <M> allows the user to enter the Monitor. This feature allows the user to examine and modify the contents of memory. This capability is primarily used in machine code applications. The 65V Primer, available through your OSI dealer, is an introduction to machine code programming using the Monitor. ## **RUNNING A "CANNED" PROGRAM** Ohio Scientific maintains an extensive library of software on both cassette and diskette to meet a wide variety of needs. With these packaged programs a user can make extensive use of the capabilities of the Challenger 1P without the need to know how to program. This section describes how to utilize these "canned" or "ready-to-run" programs. ### LOADING CASSETTE PROGRAMS The standard cassette based Challenger 1P and the Superboard II are supplied with a C1P Sampler cassette, which contains a selection of programs illustrating various capabilities of the Challenger 1P system. The following instructions describe how to load and run programs stored on cassette. With the cassete recorder attached to the C1P as described in section five and the selector switch on the rear panel set to the left position follow the instructions given in section six to enter BASIC-in-ROM. The BASIC prompt OK should be displayed in the lower left corner of the screen. Place the cassette containing the program to be loaded in the recorder and go through the following sequence of instructions: - 1. Rewind the cassette until the tape leader is visible. - 2. Type in NEW <RETURN>. This erases any program which might currently be stored in the workspace. - 3. Type LOAD but $\underline{\text{do not}}$ press <RETURN> yet. - 4. Turn on the tape recorder to play the tape. (Remember to set the volume and tone controls at the mid to high ranges.) When the tape (dark brown) begins to wind onto the right-handed spool press <RETURN>. Within a few moments, the program will begin listing on the screen. Loading of a program usually takes from 1 to 5 minutes depending upon the length of the program being loaded. 5. When the program loading is complete, the following lines will appear on the screen OK ?S<sup>J</sup> ERROR OK and the cassette recorder can be turned off. 6. To complete the loading of the program press <SPACE> followed by <RETURN>. The program is now stored in the workspace and can be executed by entering the command RUN or inspected by entering the command LIST. The above instructions assume that the program to be loaded is the first program on the cassette tape. When more than one program is stored on a cassette, the tape should be advanced to a point just preceding the program to be loaded rather than being rewound. With the Sampler cassette, load the first program and do not rewind the cassette recorder. Once you have run the first program, the tape will be in place to LOAD and RUN the next program on the cassette. The following is a brief description of the programs on the Sampler cassette. #### SIDE ONE: Basic Math—An educational quiz program that gives addition, subtraction, multiplication and division problems. Checking Account—This program helps you balance your checkbook. Just give the computer the initial balance and check amounts and let the computer do the work. Trig Tutor—This program explains and diagrams three trigonometric functions—sine, cosine and tangent. The computer then tests your comprehension with a quiz. Star Wars—An arcade-type computer game. You move the crosshairs around the screen trying to draw a bead on the target ship. #### SIDE TWO: Counter—This is a combination of an educational game and a cartoon for children learning to count from one to ten. Presidents Quiz—This program asks you 20 historical questions about various presidents. If your cassette recorder has a counter, it is recommended that you reset the counter at the beginning of the tape and make note of the start of each new program. The use of a cassette recorder for saving programs will be discussed in Section 11. #### LOADING DISK PROGRAMS The Challenger 1P MF Series 2 is a mini-floppy disk based version of the C1P. A large number of applications diskettes are available from Ohio Scientific through your dealer. Diskettes for the Challenger 1P should be labeled with the designation PICO DOS or 08-65D C1P. Many of these diskettes display a "menu" when describing the programs available on the diskette when they are loaded into the computer. In order to use these diskettes, first make sure there are no diskettes in the drive, then turn on the power to the computer, the video monitor and the floppy disk unit (in that order). Then depress the <BREAK> key until the prompt D/C/W/M? is displayed in the lower left corner of the screen. Again, verify that the Shift Lock key is down. Insert the diskette (label side up, label toward you) into the mini-floppy drive (the "A" drive if you have a dual disk drive system), carefully close the drive door, and press <D> (for disk). If the disk inserted is labeled PICO DOS, then the following text will appear on the screen when <D> is depressed PICO DOS V1.1 MEMORY SIZE? 8955 TERMINAL WIDTH? For now just enter a <RETURN> in response to the query TERMINAL WIDTH? Each PICO DOS disk provides storage for eight programs. These programs can be loaded into workspace by typing the command LOAD n <RETURN> to tabulan life south as well as in the religious significant means and an entire where n is the number (between 1 and 8) of the program you wish to load. The ROM BASIC cassette commands, LOAD and SAVE, still work without the numeric extension. When the program is loaded the prompt OK will be displayed on the screen. The program can then be executed by entering the command RUN or inspected by entering the command LIST. If the disk inserted is labeled OS-65D C1P a menu will be displayed on the screen. For example, when the standard OS-65D development disk is loaded, the following text is displayed on the screen BASIC EXECUTIVE FOR OS-65D V3.N MO,DAY,YR RELEASE FUNCTIONS AVAILABLE: CHANGE-ALTER WORK-SPACE LIMITS DIR-PRINTS DIRECTORY UNLOCK-UNLOCKS SYSTEM FOR END USER MODIFICATIONS FUNCTION? This menu offers us three choices. We can enter the response CHANGE and the computer will automatically LOAD and RUN a program by the name of CHANGE. If we enter the response DIR, then the computer will LOAD and RUN a program named DIR. If we respond UNLOCK, then the system is unlocked. This allows the user to assume control of the system with the capability to enter new programs and list programs in the workspace. The response UNLOCK places the system in the BASIC immediate mode with the display of the prompt OK. For now, we will focus on the program DIR. This program prints a directory of the files present on the diskette. If we respond DIR to the query FUNCTION? then the computer will ask us #### LIST ON LINEPRINTER INSTEAD OF DEVICE # 2? Responding NO will cause the following output to appear on the screen. # OS-65D VERSION 3. N —DIRECTORY— | FILE NAME | TRACK RANGE | |-----------|----------------| | OS-65D3 | Ø-12 | | REXEC: | 14-14 | | CHARICE | 15-16 | | CREATE | 17-19 | | DELETE | 20-20 | | DIR | 21-21 | | DIRSRT | 22-22 | | RANI ST | 23-24 | | RENAME | 25-25 | | SECDIR | 26-26 | | SEOLST | 27-28 | | TRACE | 29-29 | | ZERO | 3Ø-31 | | ASAMPL | 32-32 | | | EDEE OUT OF OA | 50 ENTRIES FREE OUT OF 64 Some of the contents of this directory listing will be discussed in detail in section eleven. The files listed contain utility programs written in BASIC. Note that we were introduced to two of these programs, CHANGE and DIR, in the menu. In addition to listing the names of the programs on the diskette, the directory tells where they are loated on the diskette. For example, the program DIR is located on track 21 and is one track long while CHANGE is a 2 track program starting on track 15. (Each diskette has 40 tracks, numbered 0 through 39.) Any of the BASIC programs on this disk can be run by responding UNLOCK to the query FUNCTION? and then entering the command "RUN followed by either the name of the program or the number of the first track where it is stored. For example, either of the commands RUN"DIR" or RUN"21" would run the program DIR. The closing quotes are optional, ie, RUN"DIR. Most of the applications diskettes do not offer the user the option of unlocking the system. On these diskettes programs are run by entering the appropriate response when the menu is displayed. The use of mini-floppy diskettes for storing programs will be discussed in detail in section eleven. ### RUNNING BASIC There are a large number of publications available which give detailed descriptions of the commands and functions of BASIC. While the material presented in this manual can in no way duplicate such excellent manuals as Basic and the Personal Computer by Dwyer and Critchfield or the Ohio Scientific BASIC Reference Manual, it at least gives some insight into the fundamentals of the BASIC language. In order to enter and run the programs listed in this section the computer should be placed in the BASIC mode with a cold start as described in section six. Recall that the Shift Lock key must be latched in the down position before the machine can be reset and BASIC can be entered. The BASIC prompt OK will signify that the computer is prepared for input. A program is a series of instructions to the computer. These instructions are stored within the memory of the computer and describe a procedure for accomplishing a specific task. Every statement in a BASIC program begins with a line number which the computer uses to sequence the statements in the program. These line numbers make it easy to modify or EDIT a program. For example, a statement can be deleted or erased by typing in its line number following immediately by <RETURN>. To insert a statement just assign it a line number which will place it in the desired location in the program. Any statement can be corrected by retyping the entire line, including the line number. An optional editor is available on disk for the C1P which simplifies these editing procedures. There are two standard techniques for correcting mistakes that occur as you enter a BASIC program. - 1. As indicated in FIGURE 6 in section 6, typing a <SHIFT O> key combination deletes the last character typed. (The <SHIFT O> notation denotes pressing the <SHIFT> and the <O> simultaneously.) Multiple deletions can be made by repeating the <SHIFT O> combination. On the Challenger 1P the character is not actually removed from the input line, but an underscore character is printed for each character deleted. - 2. As indicated in FIGURE 6, typing a <SHIFT P> key combination erases the line currently being typed. A "@" character is printed at the end of the line eliminated. The Challenger 1P is ready to accept input once the computer replies OK as indicated above. Before entering any program, it is good programming practice to first type in NEW <RETURN>. Do this and then enter the following program exactly as it appears, including all punctuation. #### **PROGRAM ONE** The following programming example demonstrates three types of statements in the BASIC language. Statement 10 is a REM statement which is used to include remarks in a BASIC program. Any text included after the keyword REM is considered to be a remark and does not affect the execution of the program. Statements 20-120 are PRINT statements. A PRINT statement causes output to be displayed on the next line of the screen. Lines 20, 30, 50 and 60 just cause a blank line to appear on the screen. In lines 40, 70-100 and 120 the actual text enclosed within quotation marks is displayed on the screen. The meaning of line 130 is obvious, it ends the program. Each of the following BASIC statements are followed by <RETURN>. This notation symbolizes to the user that the <RETURN> key is to be pressed. The <RETURN> will not be included in future program listings but must be included at the end of each line entered into the computer. The statements in this program are numbered by multiples of 10. This type of numbering routine simplifies the addition of statements at a later time. 1Ø REM-PROGRAM #1 <RETURN> 20 PRINT <RETURN> 3Ø PRINT <RETURN> 4Ø PRINT "\*\*\* HELLO \*\*\*" <RETURN> 50 PRINT < RETURN> 6Ø PRINT <RETURN> 70 PRINT "========== " <RETURN> 8Ø PRINT "THIS PROGRAM USES THE" <RETURN> 9Ø PRINT "BASIC PRINT STATEMENT" <RETURN> 100 PRINT "TO DISPLAY TEXT ON" <RETURN> 11Ø PRINT "THE SCREEN" <RETURN> 120 PRINT "=========== " <RETURN> 13Ø END <RETURN> The command LIST can be used to instruct the computer to print out the program on the screen as it is currently stored within the computer's memory. After you have listed your program and made any necessary corrections, the command RUN will instruct the computer to execute your program. If the computer detects any errors in your program it will respond with a message such as ?S ERROR IN 10 which would indicate an error in statement number 10. Appendix 7 contains a complete list of error codes. After correcting the indicated error, you can RUN the program again. The Ohio Scientific Basic Reference Manual also contains a list of the BASIC error displays. The program will remain in the workspace until you enter the command NEW or turn off the computer. Once the program is correctly entered and executing properly, you should experiment with the program by adding, deleting, or modifying statements to gain experience with the capabilities of the system. For example you might make the computer say hello to you by including your name in quotes in one of the PRINT statements. #### **PROGRAM TWO** One of the key features of a programming language such as BASIC is the use of variables. Through the use of variables, such as X, Y, S and A in the following sample program, the computer assigns names to certain locations or addresses in memory. The contents of these memory locations can then be easily modified by a variety of BASIC statements. The following simple BASIC program illustrates the use of the INPUT statement (statement 90) and the assignment statement (statements 100 and 110). 10 REM-PROGRAM #2 20 REM-PROGRAM READS 3Ø REM-TWO NUMBERS 40 REM-CALLED X AND Y 50 REM—THEN PRINTS THE Improperty to supervise respunse DAZAR and interestable stone with the second 60 REM-NUMBERS AND 70 REM-THEIR AVERAGE 8Ø PRINT "ENTER X AND Y" 90 INPUT X, Y 100 LET S = X+Y 120 PRINT "X = ": X 13Ø PRINT "Y = "; Y 14Ø PRINT "AVERAGE = "; A 15Ø END Statements 10-70 in this program are remarks (REM statements) and can be deleted without affecting the operation at the discretion of the user. It is generally considered good programming practice to include brief comments such as this to document the purpose of a program. When this program is run, statement 80 will cause the message #### ENTER X AND Y to be displayed on the screen. Statement 90 will then cause a ? to be printed on the next line. This serves as a prompt which indicates that the computer is expecting input from the keyboard. Technically, statement 80 is unnecessary and could be deleted, but it is included to remind you what the computer expects you to enter. The computer has set aside locations named X and Y in memory to receive the values you enter (see below). You should type in two values separated by a comma, say for example 8, 19 and press <RETURN>. The first value is deposited in the location named X and the second value is deposited in the location named Y. The next statement executed is statement 100. The expression on the right hand side of the equal sign, X+Y, is evaluated using the current values stored in X and Y and the result is stored in or assigned to, the location named S. Statement 110 then calculates S/2, wich means S divided by 2, and stores the result in the location named A. With the values above, S will contain 27 and A contain 13.5. Statements 120-140 illustrate a slightly different form of the PRINT that was used in Program One. Statement 120 will cause the output $$X = 8$$ to appear on the screen. As pointed out in Program One, anything enclosed within quotation marks is displayed on the screen. On the other hand, when a variable name, such as X, is listed in a PRINT statement and is not enclosed in quotes, the computer prints the contents of the location X and not the letter X. The following remarks describe several special features of BASIC on the Challenger 1P. - 1. The keyword LET is optional in an assignment statement. For example, statement 100 could be replaced by 100 S = X + Y - 2. Statements 80 and 90 could be combined into the single statement 3. Statements 90, 110 and 140 could be replaced by An expression appearing in a PRINT statement is evaluated and the result is printed. - 4. The symbol "?" can be used as a short-hand abbreviation for PRINT. Thus statement 120 can be replaced by 120? "X = "; X - 5. More than one BASIC statement can be positioned on one line with the use of the ":" symbol between the separate statements. #### **PROGRAM THREE** Normally each statement in a BASIC program is executed in sequential order. The BASIC language provides several ways of modifying the normal order of execution. If the statement is added to Program Two, then we have constructed a logical loop within our program. The program will now compute the averages of pairs of numbers indefinitely. Statement 145 provides an unconditional branch. Each time the execution of the program reaches statement 145, control will be looped back to statement 8\@. This new version of Program Two has one major problem—there is no convenient way to terminate execution. Because of the possibility of forming endless loops of this type in a BASIC program, the Challenger 1P provides two methods of interrupting a program (short of pulling the plug.) First, any program can be terminated by holding the <BREAK> key down for several seconds. This resets the computer and displays the D/C/W/M? prompt on the screen. Another way to interrupt the execution of a BASIC program is to press <CONTROL C>. When this is entered, the computer terminates execution and prints the message #### BREAK IN LINE XXXX The user can then list and modify his program as desired. Rather than force the user to resort to entering <BREAK> or <CONTROL C> to terminate the execution of our new version of Program Two, we can replace statement 145 by #### 145 IF A<>Ø THEN GO TO 8Ø This statement checks the condition $A < > \emptyset$ (A not equal to zero). As long as the average is not zero, control is transferred back to statement $8\emptyset$ and another pair of numbers is processed. The user can now terminate the execution of the program by entering any two numbers X and Y whose average is $\emptyset$ . This type of a conditional branch is an extremely useful feature of BASIC. Refer to Ohio Scientific's BASIC Reference Manual and BASIC and The Personal Computer (available from your local OSI dealer) or any other BASIC language text to continue developing your programming skills. ### GRAPHICS The Challenger 1P features the same set of 256 graphics characters offered on the more expensive C4P and C8P series of computers. A complete list of these characters may be found in Appendix 9. The normal display mode for the C1P is 24 rows $\times$ 24 columns in black and white. The Series 2 provides an alternate 12 row $\times$ 48 column text display mode. With the 63 $\emptyset$ I/O expander board the C1P Series 2 user can display any of the 256 graphics characters in up to 16 colors on a standard color television set or color monitor. The color option is discussed in section nineteen where several special features of the 63 $\emptyset$ I/O expander board are described in detail. For display purposes the screen is divided into a grid of rectangular blocks. Each of these blocks is associated with a specific address in memory. The display within each cell of the grid is determined by the numeric content of the memory location associated with the cell. Figures 7 and 8 illustrate the video memory maps for both the standard $24 \times 24$ video display and the alternate $12 \times 48$ video display on the Challenger 1P. These memory maps indicate the memory address of each cell on the screen. In the standard $24 \times 24$ display mode, for example, the cell in the upper left hand corner of the screen has address 53381 while the cell in the lower right hand corner of the screen has address 54141. The memory maps actually give the address of each cell in two different number systems—decimal and hexadecimal. The use of the hexadecimal number system for addressing on the Challenger 1P is discussed in Appendix 2. Although your display may have 1 or 2 additional visible lines at the top and/or bottom of the screen due to variations between video monitors, it is recommended that graphic displays be restricted to the regions of the screen prescribed by the video maps. Figure 7: Video Memory Map (24 × 24 Format) Figure 8: Video Memory Map (12 × 48 Format) Appendix 9 shows the diagrams and numeric codes for each of the 256 graphics characters available on the Challenger 1P. The Challenger 1P uses the BASIC statement POKE to display a character at a specified location on the screen. The BASIC statement POKE is an extremely useful statement. It can be used to store any numeric value (in the range \$\tilde{\rho}\$-255) at any address in RAM memory. THE POKE STATEMENT MUST BE USED WITH CAUTION. The ability it gives the user to modify the contents of memory can lead to disastrous effects if POKEs are made to random areas of memory. Since the memory associated with the screen is RAM memory, the POKE statement allows us to place the numeric value of any figure we wish to display on the screen in the memory location associated with the cell in which we wish to display the figure. The syntax of the POKE statement is as follows #### POKE address, value Follow the cold start procedure described in section six to enter BASIC-in-ROM. When the BASIC prompt OK appears, hold down the <RETURN> key until the screen is cleared and then directly enter the command POKE 53776, 239. A small airplane will be displayed in approximately the center of the screen. Now enter the following sample program. 10 REM-GRAPHICS DEMO 20 REM-CLEAR THE SCREEN 30 FOR J=1 TO 30 40 PRINT 5Ø NEXT J 60 REM-MOVE FIGURE ACROSS 7Ø REM-THE SCREEN 8Ø FOR I=Ø TO 25 9Ø POKE 5354Ø+1, 32 100 POKE 53541+1, 237 11Ø NEXT I 12Ø END Study this program carefully and try to predict what will happen when you run it. Statements 30-50 form a FOR-NEXT loop which will cause the PRINT statement to be executed 30 times. Each time the PRINT statement is executed the display on the screen will scroll up one line, thus statements 30-50 will clear the screen. Statements 80-110 are another FOR-NEXT loop. Statements 90 and 100 within this loop will be executed 26 times for values of I ranging from 0 to 25. The first time through the loop I is 0 and the two statements are interpreted as 9Ø POKE 5354Ø, 32 [note: 5354Ø+I=5354Ø+Ø=5354Ø] and 100 POKE 53541, 237 [note: 53541+I=53541+0=53541] Referring to the video memory map and the list of graphics characters, we see that statement 90 places the value 32 in memory location 53540. Memory location 53540 does not correspond to a cell on the screen (actually it corresponds to a position which is not visible because of overscan on the video monitor). Thus statement 90 has no visible effect the first time through the loop. On the other hand, statement 100 places the value 237 in memory location 53541 which corresponds to the first cell in the sixth row of the screen. The visible effect of statement 100 is the appearance of a small airplane (character number 237) at the left edge of the screen about one quarter of the way down the screen. The loop is now repeated, this time with I=1. This time statements 90 and 100 are interpreted as 9Ø POKE 53541, 32 [note: 5354Ø+I=5354Ø+1=53541] and 100 POKE 52542, 237 [note: 53541+1=53541+1=53542] This time the effect of statement 90 is to place a blank in the first cell in the sixth row (thereby erasing the airplane placed there the first time through the loop) and statement 100 then redraws the airplane in the second cell of the sixth row. As the loop is repeated for subsequent values of I ranging from 2 to 25 the airplane is moved cell-by-cell across the screen. Due to the speed of the microprocessor, the program executes so quickly that it is difficult, if not impossible, to distinguish each step as the plane moves across the screen. This difficulty can be remedied by adding the following lines of code to your program (remember that BASIC will use the line numbers to automatically insert these statements in their appropriate location within the program). 25 INPUT "ENTER DELAY"; D 104 REM-GO TO DELAY 105 REM-SUBROUTINE 1Ø6 GOSUB 2ØØ 200 FOR T=1 TO D 21Ø NEXT T 220 RETURN A complete listing of the modified version of the program is now 10 REM-GRAPHICS DEMO 20 REM-CLEAR THE SCREEN 25 INPUT "ENTER DELAY"; D 30 FOR J=1 TO 30 **40 PRINT** 50 NEXT J 60 REM-MOVE FIGURES ACROSS 7Ø REM-THE SCREEN 8Ø FOR I=Ø TO 25 9Ø POKE 5354Ø+1, 32 100 POKE 53541+I, 237 104 REM—GO TO DELAY 105 REM—SUBROUTINE 106 GOSUB 200 110 NEXT I 120 END 200 FOR T=1 TO D 210 NEXT T 220 RETURN Statement 106 causes a jump to be made to statement 200. Statements 200 and 210 just make the computer count to whatever value you enter for D before it returns to statement 110 and repeats the FOR-NEXT loop for the next value of I. The addition of these statements allows the user to slow down the execution of the program sufficiently to follow the progress of the plane across the screen. You should run the program for values of D ranging from 1 to 1000 to observe the effect on the speed of execution. This program illustrates the general concepts involved in displaying graphics characters on the screen. An important fact to remember in moving a figure on the screen is that the figure must be erased from its old location as well as redrawn at its new location. Many of the graphics characters are designed to be used in pairs or groups to produce larger figures. Displaying characters 9 and 10 in adjacent horizontal cells displays a space ship. Characters 179-182 can be combined to display ships. Characters 229-232 depict the four playing card suits—hearts, clubs, spades and diamonds. Figure 9: FOR-NEXT Loop Directional Increments Figure 9, shown above, shows the values to increment a screen location to produce movement in the associated direction. The twelve directions shown in Figure 9 are demonstrated in the following program. 1Ø FOR SC=1 TO 25: PRINT: NEXT 2Ø X=53711: Y=161: POKEX, Y 30 FOR R=1 TO 12: READ D 4Ø FORI=1TO1Ø: POKEX+D, Y: X=X+D: NEXT 45 X=53711 5Ø NEXT R 6Ø DATA -32, -31, -3Ø,1, 34, 33 7Ø DATA 32, 31, 3Ø, -1, -34, -33 8Ø GOTO8Ø: REM PREVENT SCROLL 90 REM PRESS <CTRL C> TO END In section twelve the graphics capabilities of the Challenger 1P will be further illustrated by a program which allows the user to control the movement of a figure on the screen by depressing various keys on the keyboard. The Series 2 models of the Challenger 1P offer an alternate 12 row $\times$ 48 column display mode. This display mode provides 12 lines of text (with intervening blank lines) of 48 characters each. The 12 $\times$ 48 mode is primarily intended for the display of text (the intervening blank lines are not compatible with most graphics displays). In order to use the $12 \times 48$ display mode, the standard software which controls the video display must be modified. This is accomplished by running a special program which swaps a new video driver for the old. This program named SWAP is supplied in an autorun form on cassette with the standard C1P and on diskette with the C1P MF. The screen size option is controlled by bit $\emptyset$ of the control register at 55296 (address D800 in hexadecimal). For example, once the program SWAP has been run POKE 55296, Ø selects the 24 × 24 display mode POKE 55296, 1 selects the 12 × 48 display mode. (Appendix 5 gives a complete listing of the values to poke at 55296 to obtain various combinations of options such as screen width and DAC sound.) On standard cassette versions of the Challenger 1P, memory location 251 is used in place of 55296 to control screen width, DAC sound and the color option, if the program SWAP has been run. Thus, on the cassette based version of the C1P, the screen size is selected as follows POKE 251, Ø selects the 24 × 24 display mode POKE 251, 1 selects the $12 \times 48$ display mode. ### SOUND All Series 2 models of the Challenger 1P have a built-in 8 bit digital to analog converter (DAC) which is capable of generating sound output. The signal from the DAC is available at the DAC output port on the rear panel of the C1P (see Figure 1). The signal from this output port can be fed into the auxiliary input of an audio amplifier or the audio input jack on the rear of a video monitor. Software is available from Ohio Scientific through your local dealer for the Challenger 1P MF Series 2 which allows the user to enter, play and store songs with multiple parts. The programming techniques required to generate sound through the DAC are relatively sophisticated. The output at the DAC output port must be updated at least 500-1000 times per second even for the simplest tones. A high level language such as BASIC does not provide sufficiently fast execution speed to be suitable for such applications. Routines to generate musical tones must be written in assembler or machine code (the "native language" of the microprocessor) to attain the execution speed necessary. Memory location 55296 (address D800 in hexadecimal) is reserved as a control register on the Challenger 1P. Just as the user can use this register to choose between the $24 \times 24$ and the $12 \times 48$ display mode, he can also enable (turn on) or disable (mute) the output from the DAC with different POKEs to the location 55296. For the purposes of this section we will restrict our attention to the following two possibilities: POKE 55296, Ø mutes the DAC output POKE 55296, 16 turns on the DAC output These two POKEs both select the standard $24 \times 24$ display mode. (Appendix 5 gives a complete listing of the values to POKE at 55296 to obtain various combinations of options such as DAC sound and screen format.) Random output from the DAC can be heard quite easily by the following method. Turn on the computer and do a cold start. When the OK prompt is displayed, type in POKE 55296, 16 (with no line number) and depress one or two keys in the top row of the keyboard. If the DAC is hooked up correctly and the volume is turned up, you should hear various high pitch tones. These tones are being generated since the DAC and the keyboard share the same I/O (Input/Output) port at 57088 (address DF00 in hexadecimal). These tones can be turned off by entering POKE 55296, Ø which will mute the output to the DAC. Programming to produce sound output with the DAC generally involves the following simple scheme: - 1. Turn on the DAC. - 2. Send a constantly varying sequence of values to the DAC output port. - 3. Turn off the DAC. The following sample program alternately stores the values $\emptyset$ and 255 at address 57\psi88 (the DAC output port). In the beginning the alternating values generate a square wave with a relatively low frequency of approximately 75 cycles per second. As execution proceeds, the frequency increases until it reaches a relatively high frequency of approximately 12\pi\pi\pi\pi\pi\ cycles per second. The audible effect is similar to a slide whistle sliding from a low note to a high note. This routine is written for ROM BASIC. 10 REM-TURN ON DAC 2Ø POKE 55296, 16 30 REM-READ MACHINE CODE 4Ø REM-ROUTINE AND STORE 50 REM-BEGINNING AT 3072 60 FOR I=1 TO 38 70 READ V 8Ø POKE 3Ø71+I, V 90 NEXT 100 REM-READ MACHINE CODE 110 REM-SUBROUTINE AND 12Ø REM-STORE BEGINNING AT 13Ø REM-3328 14Ø FOR I=1 TO 12 15Ø READ V 16Ø POKE 3327+I, V **170 NEXT** 18Ø REM-STORE STARTING 19Ø REM-HEX ADDRESS 200 REM-OF MACHINE CODE 21Ø REM-ROUTINE FOR USR (X) 22Ø POKE 11,Ø : POKE 12,12 23Ø REM-JUMP TO MACHINE CODE 24Ø Y=USR(X) 25Ø REM-TURN OFF DAC 26Ø POKE 55296, Ø 27Ø END 28Ø DATA 169, 8, 141, 12, 13 29Ø DATA 169, Ø, 141, Ø, 223 3ØØ DATA 32, Ø13, 169, 255 31Ø DATA 141, Ø, 223, 32, Ø, 13 32Ø DATA 2Ø6, 12, 13, 2Ø8, 235 33Ø DATA 2Ø6, 13, 13, 173, 13, 13 34Ø DATA 141, 14, 13, 2Ø8, 219 35Ø DATA 96 36Ø DATA 174, 14, 13, 16Ø, 4 370 DATA 136, 208, 253, 202 38Ø DATA 2Ø8, 248, 96 The data statements at the end of this BASIC program comprise a sequence of instructions for the microprocessor written in the "native language" of the 6502 microprocessor. Notice that we are able to turn the DAC on and off within the BASIC program, but we have to resort to machine code to obtain the speed of execution necessary to generate sound. The USR(X) function referenced in statement 240 provides a convenient means of interfacing machine code routines with BASIC programs. This feature is discussed in Ohio Scientific's BASIC Reference Manual. For a detailed description of Assembler Programming on the 6502 see the MOS Programming Manual by MOS Technology, Inc. and Ohio Scientific Assembler/Editor and Extended Monitor Manual. The 630 I/O Expander Board provides an alternative means of generating sound with a programmable tone generator. This feature is discussed in section nineteen where the several features of the 630 I/O Expander Board are discussed in detail. ### **EXTERNAL STORAGE OF PROGRAMS** All models of the Challenger 1P line of computers, including the Superboard II, include an audio cassette interface. This interface allows a standard audio cassette recorder to be used for program storage and playback. Although cassette I/O is not as convenient as disk I/O, it provides an inexpensive means of building a permanent library of programs. Moreover, a large library of applications software is available on cassette from Ohio Scientific through your local Ohio Scientific dealer. ## CASSETTE STORAGE AND MADE TO LOOK AND MADE AND THE ASSOCIATION OF THE PROPERTY In section seven the user learned how to attach a cassette recorder to the Challenger 1P and was introduced to the procedure for loading and running prerecorded or "canned" programs. This section describes the use of both cassettes and diskettes for saving programs. The following instructions describe how to record a program onto a cassette tape. These instructions can be used to record any BASIC program contained in the workspace whether the program was entered line-by-line through the keyboard or was itself initially loaded from cassette. Recall that the selector switch on the rear panel of the C1P must be set to the left (cassette) postion in order to do SAVEs and LOADs with cassettes. These instructions can, for example, be used to create a backup of the Sampler tape provided with your cassette based Challenger 1P by loading each program from the Sampler tape and then recording it onto a blank tape. It is recommended that you use new or thoroughly erased cassettes of good quality for recording programs to avoid noise and other problems associated with old cassettes. When your program is in the form you wish to save, place a cassette in the recorder and rewind the cassette so that the tape leader is visible on the right-hand spool (or to the point at which you wish to store the program if you are storing more than one program on a cassette). The following sequence of instructons will then store the program on the cassette. - 1. Type SAVE <RETURN>. - 2. Type NULL8 <RETURN>. - 3. Type LIST but do not press <RETURN> yet. - 4. Now turn on the tape recorder in the RECORD mode. When the tape (dark brown) begins to wind onto the right-hand spool, wait 5 seconds and press <RETURN>. The program will begin listing on the screen and to the cassette port. When the last line of the program is listed, wait a few seconds and turn off the recorder. To reset the computer to keyboard input - 5. Type in LOAD <RETURN>. - 6. Press <SPACE> followed by <RETURN>. Each cassette should be labeled to identify the contents. If you wish to protect the contents from accidental erasure, break out the appropriate "record protect" tab from the rear edge of the cassette. The sample programs in Section Nine and Ten can be used to practice saving and loading programs. Programs stored on cassette using the above procedure can be loaded using the technique described in section seven. This procedure can be modified slightly to store programs on cassette in an autorun format. These programs automatically run themselves once they are loaded from cassette. The procedure described above must be modified in the following manner to make an autorun cassette: 1. The first line of the program to be saved must be POKE 515, Ø 2. Follow the SAVE prodecure described above only to step 5. Between steps 4 and 5 type in RUN before you turn off the tape recorder, then type LOAD <RETURN>. Although a cassette recorder provides an inexpensive means of storing programs, the LOAD and SAVE procedures are slow, and keeping track of the location of multiple programs on a cassette can be cumbersome. A minifloppy disk unit provides a much faster and more convenient method of saving and loading files. The Challenger 1P MF Series 2 is a mini-floppy disk based version of the C1P. In addition to all the features of the standard C1P, it incorporates a single mini-floppy disk drive and 20K of RAM. The C1P MF Series 2 comes complete with two disk operating systems—PICO DOS and OS-65D. The extra RAM memory is necessary to use these disk operating systems since these operating systems are themselves stored in RAM each time the disk is loaded. The PICO DOS or disk operating system uses ROM BASIC. It allows the use of cassette originated programs on diskettes. PICO DOS occupies approximately 4K of RAM and operates with a fixed 8K workspace. Thus PICO DOS can actually be utilized on a C1P system with a 610 expander board and 12K of RAM. This is an intermediate growth step between the C1P Series 2 and the C1P MF Series 2. The OS-65D operating system is a more powerful disk operating system. This disk operating system occupies somewhat over 12K of RAM and uses 9-digit BASIC by Microsoft rather than the built-in ROM BASIC. With 20K of RAM, the C1P MF Series 2 has an 8K workspace under the OS-65D disk operating system. With added memory the workspace under OS-65D can be expanded to 20K (or a total of 32K RAM). Mini-floppy diskettes and disk drives are precision pieces of hardware and require reasonable care to insure continued satisfactory performance. Appendix 8 includes some guidelines on the handling of floppy diskettes ad disk drives. ### THE PICO DISK OPERATING SYSTEM The PICO DOS system provides an extension of the BASIC-in-ROM LOAD and SAVE commands to permit files to be saved on mini-floppy diskettes as well as on cassettes. This system allows for the storage of 8 programs on a single mini-floppy diskette. In order to use the PICO disk operating system, first turn on the power to the computer, video monitor and floppy disk unit and depress <BREAK> until the prompt "D/C/W/M?" appears in the lower left corner of the screen. Insert a PICO DOS diskette, label side up, into the mini-floppy drive (the "A" drive if you have a dual disk drive system) and press <D>. The PICO disk operating system will respond with the following message PICO DOS V1. 1 MEMORY SIZE? 8955 TERMINAL WIDTH? The memory size is automatically set at 8955 by the PICO disk operating system. Unless the terminal width needs to be changed from the default value of 132 to meet the needs of a specific output device, just enter a <RETURN> in response to the query TERMINAL WIDTH? The new commands available under the PICO disk operating system are LOAD n and SAVE n where n is program number from 1 to 8. These supplement the normal cassette LOAD and SAVE commands, which still function as before. To save a program, simply enter it into the computer either through the keyboard, from cassette or perhaps from another PICO DOS diskette and type SAVE n where n is any number between 1 and 8. For example, the command SAVE 5 will save the contents of workspace on the fifth file on the disk. This will erase any program previously stored there. This program can be recalled at a later time with the command LOAD 5. Once the program is loaded into workspace from a diskette, it can be listed, modified and executed in exactly the same manner as programs entered through the keyboard or from cassette. #### THE OS-65D DISK OPERATING SYSTEM The OS-65D disk operating system is a convenient to use disk operating system which fully supports Microsoft's 9-Digit Extended BASIC, an optional 65Ø2 resident Assember/Editor, an optional 65Ø2 Extended Machine Code Monitor and various I/O devices. It supports writing programs in BASIC, storing programs on disk by name or track number, recalling programs and reading and writing sequential and random access data files in BASIC. The system is also well suited to utilize machine code subroutines in conjunction with BASIC programs. In order to use the OS-65D disk operating system, first turn on the power to the computer, video monitor and floppy disk unit and press <BREAK> until the prompt D/C/W/M? appears in the lower left corner of the screen, check that the Shift Lock key is down. Insert an OS-65D diskette into the mini-floppy drive (the "A" drive if you have a dual disk drive system), remember to check the shift lock key and press <D>. When <D> is depressed the OS-65D disk operating system is loaded into memory and a BASIC program called BEXEC\* is automatically loaded and executed. The program BEXEC\* on the standard OS-65D development disk causes the following text to be displayed on the screen BASIC EXECUTIVE FOR OS-65D V3. N MO, DAY, YR RELEASE FUNCTIONS AVAILABLE: CHANGE—ALTER WORK-SPACE LIMITS DIR—PRINTS DIRECTORY UNLOCK—UNLOCK SYSTEM FOR END USER MODIFICATIONS FUNCTION? (On some special applications diskettes the program BEXEC\* has been modified. When these diskettes are loaded the response may differ from that listed above. With these disks the user should just respond as directed by the displayed message.) If the user responds CHANGE or DIR (for a directory of the diskette), then these programs are loaded and executed. When these programs finish executing the OK prompt is displayed, but the system is in a LOCKED mode and will not allow the user to enter new BASIC programs. If the user responds UNLOCK to the query FUNCTION? then the system is placed in the BASIC immediate mode with display of the prompt OK. This prompt serves the same function as the OK in BASIC-in-ROM. It indicates that the system is prepared to respond to the standard BASIC commands, such as RUN. Unlocking the system does not remove the program BEXEC\* from the workspace. If the command LIST is entered after the response UNLOCK, the program BEXEC\* will be listed. If the user depresses <CONTROL S> while a program is being listed or while a program is running, the listing or the execution will be interrupted until <CONTROL Q> is depressed. Before beginning to enter a new program the user should type NEW to clear the workspace. The commands NEW and LIST are not acknowledged when BASIC is in the LOCKED mode. In order to UNLOCK the system, the user must run BEXEC\* and respond UNLOCK to the query FUNCTION?. The program BEXEC\* can be run either by entering the command RUN"BEXEC\*" or by pressing <BREAK> and reloading or rebooting the OS-65D disk operating system. If the user enters the response UNLOCK (followed as usual by <RETURN>), then the system is unlocked. This allows the user to assume control of the system with the capability to erase old programs, enter new programs and list programs in the workspace. BASIC programs can be entered through the keyboard in essentially the same manner as when BASIC-in-ROM was used. One slight difference is that when the <SHIFT O> is used as a backspace the character to be deleted is actually erased and the cursor moved one space to the left. Before discussing the techniques for storing programs on diskette under the OS-65D disk operating system it will be helpful to describe some of the utility programs supplied with each OS-65D development disk. Each OS-65D development disk is shipped with either a black or white write protect tape attached. This tape is located near the upper right hand corner of the disk and covers a notch in the diskette cover. With this tape attached, it is possible to read from the disk but impossible to modify, or write to, the disk. This tape provides protection against inadvertent writes to the disk. The tape must be removed before anything can be stored on this disk. In particular, the utility programs CREATE and DELETE will not execute on a write protected disk (as indicated by an ERR #4 message). Each OS-65D development disk contains a BASIC program named DIR. This program prints a director of the named files present on the diskette. Please note that programs stored without names will not be listed. This program can be run once the system has been unlocked by entering the command RUN"DIR." This program can also be run by responding DIR to the query FUNCTION? when the diskette is first loaded. A third way to run this program is to enter RUN"21." When the program DIR is run it first asks #### LIST ON LINEPRINTER INSTEAD OF DEVICE # 2? Depending upon your response the following output will appear either on the screen or on a printer (if one is attached and you respond YES). # OS-65D VERSION 3. N —DIRECTORY— | -DIRECTORY- | | | | | |---------------------------|-------------|--|--|--| | FILE NAME | TRACK RANGE | | | | | OS-65D3 | Ø-12 | | | | | BEXEC* | 14-14 | | | | | CHANGE | 15-16 | | | | | CREATE | 17-19 | | | | | DELETE | 20-20 | | | | | DIR | 21-21 | | | | | DIRSRT | 22-22 | | | | | RANLST | 23-24 | | | | | RENAME | 25-25 | | | | | SECDIR | 26-26 | | | | | SEQLST | 27-28 | | | | | TRACE | 29-29 | | | | | ZERO | 3Ø-31 | | | | | ASAMPL | 32-32 | | | | | 5Ø ENTRIES FREE OUT OF 64 | | | | | OK Each mini-floppy diskette has 40 tracks, numbered 0-39. As the above listing shows, tracks 0-12 are reserved for the OS-65D disk operating system. Note that the program BEXEC\* is located on track 14. With the exception of the file ASAMPL which contains a sample assembler routine, each of the other files contains a utility program written in BASIC. These programs can be used without any knowledge of how they are implemented, but the interested user may find it useful to study them as sample programs since they demonstrate a wide variety of programming and file accessing techniques. The directory listed above indicates that tracks 33-39 are currently not in use. These tracks can be used to store programs written by the user. The OS-65D disk operating system allows the user to store programs either by track number or by name. The command #### DISK!"PUT 33" will store the program in workspace on the disk starting at track 33. This method of storing programs must be used with caution since there are no safeguards to prevent overwriting of existing files, as there are with the named file procedures. Before a BASIC program can be stored by name, it is necessary to create a file to receive it. This will require an estimation of how many tracks your program will use at 2K bytes per track (see page 35). The utility program CREATE provides a means of adding new named files to the directory. To create a file, type #### RUN"CREATE" (You must be in the BASIC immediate mode as indicated by the prompt OK in order to enter this command.) This command will cause the BASIC utility program CREATE to be loaded and executed. The program output and the expected responses are shown below. Any unacceptable response will result in termination of the program or a repeat of the request for input. FILE CREATION UTILITY PASSWORD? Unless you modify the code for the program CREATE, the password for this and all other OSI utility programs is just the word PASS. After you enter this password (and press <RETURN>) the program continues with an explanation of its operation: CREATES AN ENTRY IN DIRECTORY FOR A NEW FILE AND INITIALIZES THE TRACKS THAT THE NEW FILE WILL RESIDE ON. THE TRACKS WILL CONTAIN NULLS WITH A RETURN AT THE END OF THE TRACK. FILE NAME? Enter a one to six character file name that is not a duplicate of an existing file on the disk. The file name must begin with a letter. The program will then respond. #### FIRST TRACK OF FILE? Enter the number of the first track the file is to reside on. Note that a named file always begins on a track boundary and resides on a whole number of tracks. The next response is #### NUMBER OF TRACKS IN FILE? Enter the number of tracks on which the file is to reside. You will have to estimate how large your program will be. Each track of the disk will hold 2K of material. The program will perform a check to verify that the tracks you have specified are not currently occupied by any other named files in the directory. If the tracks you have specified are available, the program continues with #### 8 PAGES PER TRACK. IS THIS OK? Each track on a mini-floppy has a maximum capacity of 8 pages with each page capable of storing 256 BYTES. When a file is being created to store a BASIC program the response to this question should be YES since this will make maximum use of the space available on the diskette. The file will now be created and its name and track location will be entered into the directory. When the CREATE utility program is finished, the prompt OK will again appear on the screen. The OS-65D approach to files requires that the user know how large his file needs to be when it is created. To be safe, the user can simply specify a disk file size as large or slightly larger than the available RAM for BASIC programs. For example, with a Challenger 1P MF with 20K of RAM, slightly less than 8K is available for programs. Since each track can store 2K BYTES (8 pages at 256 BYTES per page), a four track file will hold any BASIC program that can be entered into the machine. The user should always maintain a scratch file, usually with the name SCRTCH, which is at least as large as the memory size of the computer. This would mean a 4-track (8K) SCRTCH file for a computer with 2ØK of RAM. This file can serve as temporary storage in several situations. If, for example, the user types in a program and then remembers that he did not create a file for it, then he can simply store the program temporarily on the file SCRTCH, run CREATE to create a new file to hold the program, reload the program from SCRTCH and then store it under its proper name. It is clear from looking at the directory listing that the utility programs occupy a major portion of the disk and leave little room for the storage of user generated programs. A common solution to this problem is to maintain multiple copies of the OS-65D disk. At least one of these should be left intact with all the utilities present. On the other disks, the utility program DELETE can be used to remove the majority of the utility programs. A reasonable choice might be to delete all the utilities except DIR, CREATE and DELETE since these are the most commonly used utility programs. If the other utility programs are needed, they can be loaded from the OS-65D disk containing them. The DELETE utility program can be run by typing #### RUN"DELETE The program output and the kind of input you may enter in response are shown below. Any unacceptable response will result in termination of the program or a repeat of the request for input. #### **DELETE UTILITY** #### REMOVES AN ENTRY FROM THE DIRECTORY PASSWORD? (Enter PASS) FILE NAME? Enter the name of the file to be deleted and its name will be removed from the directory. The file is still physically present on the disk and can be run by track number. The DELETE utility merely removes its name from the directory. The other utility programs present on the OS-65D disk will not be discussed in this manual. Their operation is completely described in the OS-65D USER'S MANUAL. The OS-65D disk operating system contains its own command interpreter. This interpreter handles commands for such tasks as initializing diskettes, loading and saving files, loading the 9-Digit Extended Basic interpreter and loading the Assembler and Extended Monitor, if your disk has these. A summary of the commands in the OS-65D disk operating system is provided in Appendix 6. For the purpose of loading and saving BASIC programs, the commands of primary interest are the two commands LOAD FILNAM Loads named source file FILNAM into memory and PUT FILNAM Saves source file in memory on the named disk file FILNAM These commands, as well as the other commands in the OS-65D disk operating system, are not recognized in this form when in the BASIC immediate mode. To enter these commands when in the BASIC immediate mode, they must be prefixed by DISK!" This prefix identifies the commands as part of the OS-65D disk operating system. The command interpreter only uses the first two characters in each OS-65D disk operating system command, so each command can be abbreviated to two letters. Suppose now that you have created a file named PROG1 and have entered a BASIC program into the workspace and wish to save it in the file PROG1. The command DISK!"PUT PROG1" or DISK!"PU PROG1" will cause the source file to be stored in the file PROG1 on the diskette. There are four common user errors that can arise in connection with this command. - 1. The diskette is write protected (ERR #4 message) - 2. The disk drive is not turned on (no message on screen). - 3. No file has been created to receive the program or the file name is entered incorrectly (EER #C message). - 4. The program is too long to fit in the file (ERR #D message). Appendix 7 contains a list of error codes which are associated with these and other disk I/O errors. If the disk drive is not turned on or the drive door is not shut, the system will just "hang" until the drive is ready and then an error condition will normally be issued. Remember to avoid turning the disk drive on or off when it contains a disk. Once a BASIC program has been stored on a file, it can be loaded later from BASIC with the command DISK!"LOAD PROG1 or DISK!"LO PROG1 This command will cause the program to be loaded into the workspace. It can then be modified or executed with the standard BASIC commands (e.g. LIST, RUN, etc). OS-65D allows the user to combine the LOAD and RUN command into one command **RUN"PROG1** This feature has already been illustrated in our discussion of the utility programs. As was pointed out earlier, the OS-65D disk operating system requires the user to specify the size of a file at the time it is created. If the user follows the preceding recommendations and creates a scratch file SCRTCH of sufficient size to store a program of maximum size, then the disk I/O errors #C (can't find that name in the directory) and #D (read/write attempted past the end of named file) can usually be easily handled by temporarily placing the program in the scratch file. Obviously, it is desirable to store a program in as small a disk file as possible to conserve disk space. The following discussion describes a simple procedure which allows the user to determine the number of tracks needed to store a program. The OS-65D disk operating system allows the user to leave the BASIC immediate mode by entering the command EXIT. When this command is issued, two lines appear on the screen. These two lines will have the following form **ØN TRACK** **A**\* In the first line N is an integer which indicates the minimum number of tracks required to store the current contents of workspace on disk. If the user has just entered a BASIC program or is in the process of entering a BASIC program, this informs him how many tracks would be required to store the program in its present form. The second line, the A\*, is the OS-65D disk operating system kernel prompter. It indicates that the user is no longer in the BASIC immediate mode, but rather is in the kernel of the disk operating system. Any of the OS-65D disk operating system commands can be issued when in the kernel (without the DISK!" prefix). If the user has entered the kernel from BASIC, the command RETURN BASIC or RE BA will return the user to BASIC and leave the contents of the workspace unchanged. The command BASIC or BA will also return the user to BASIC but the contents of workspace are lost. Thus, the user who is entering a BASIC program, can get an estimate of its size at any time by entering the command EXIT, noting the track requirements and returning with the command RETURN BASIC or simply RE BA. Programs can be stored on cassette under OS-65D in the following manner: - 1. Type DISK!"IO, Ø3 <RETURN> - 2. Type NULL8 < RETURN> - 3. Now turn on the tape recorder in the RECORD mode. - 4. When the tape (dark brown) begins to wind onto the right-hand spool, type LIST <RETURN> - 5. When the LIST is completed, turn off the tape recorder. Programs can be read into the workspace from cassette under OS-65D using the following technique. The tape must be positioned immediately preceding the program to be loaded or extraneous noise will disrupt the load. More than one attempt may be necessary before the program will be successfully loaded. - 1. Type DISK!"IO Ø1 but do not type <RETURN> - 2. Start the cassette recorder and immediately press <RETURN>. If the procedure is successful the program will begin listing on the screen. If not repeat the procedure. This section has provided an introduction to the OS-65D disk operating system. The system includes a large number of features which we do not have room to properly cover here. The OS-65D USER'S MANUAL covers all of these features in detail and is required reading for the serious user who wishes to take full advantage of the capabilities of the system. # ADVANCED FEATURES-LOWER CASE, KEYBOARD PROGRAMMABILITY ## LOWER CASE The Ohio Scientific Challenger 1P is capable of generating lower case characters as well as numerous graphics characters. Under normal operation, the shift lock key is in the depressed or locked condition. It must be in this position for normal systems level software to operate, this is because all BASIC commands must be given in capital letters. With the Shift Lock key down, depressing any alphabetic, numeric or punctuation key on the keyboard will cause the keyboard to generate upper case alphabetics and numerics. By depressing the left or right shift key in conjunction with another key, punctuation and special control codes will be generated. For example, depressing the <SHIFT> key and the <5> key together generates a per cent sign (%). Depressing the <SHIFT> key and the <P> key together generates a commercial at sign (@) which is recognized in BASIC as being the line delete code (compare figure 6 in section six). The shift lock key can be released for certain special applications. Specifically, to generate lower case characters as part of literal strings such as "This is a string" in BASIC and for use in conjunction with word processing, the keyboard will act very differently when the <SHIFT> key is not in the locked position. With the shift lock key up, only standard alphabetic keys will generate expected results. Specifically, depressing any alphabetic key will cause the generation of a lower case alphabetic character. In this mode of operation, the left shift key has a different function than the right shift key. Depressing the left shift key in conjunction with alphabetic or numeric keys generates upper case alphabetics and numerics. The right shift key in conjunction with other keys generates upper case punctuation. For example, depressing the 5 key without either shift key generates "garbage." Depressing the 5 key in conjunction with the left shift key generates the numeral 5. Depressing the 5 key in conjunction with the right shift key generates the per cent (%) key. As stated in numerous other places, the shift lock key should be kept in a depressed or locked mode except when lower case characters are explicitly desired. # **KEYBOARD PROGRAMMABILITY** The Challenger 1P keyboard has a built-in auto repeat feature. By depressing any key and holding it down, first that character will be generated once and then after approximately one-half second, the character will be repeated at a rapid rate. The internal design of the polled keyboard on the Challenger 1P views the keyboard as an array of 8 rows and 8 columns (see Figure 10). Normally, when a program is not executing, a polling routine constantly scans each of the eight rows in succession to determine the column of any depressed key. If a key closure is detected, the polling routine supplies the ASCII code corresponding to the face of the key depressed. During the execution of a program this polling routine is disabled and replaced by a second routine which monitors the <CONTROL> and <C> keys. If these keys are simultaneously depressed, then execution of the program is terminated (see Figure 6 in section six). In many applications it is useful to program keys for special purposes such as controlling the movement of figures on the screen. In order to program special key functions, the CONTROL-C polling routine must be temporarily disabled. The method for accomplishing this depends upon whether the program will be run with BASIC-in-ROM or 9- NOTES: 1. Standard 53-key layout except: "HERE IS" deleted, "RUB OUT" at "HERE IS" location, "SHIFT LOCK" at "RUB OUT" location. 2. "LEFT SHIFT" and "RIGHT SHIFT" separately decoded. Figure 10: Switch Matrix-CIP Polled Keyboard. Digit Extended BASIC (with OS-65D). The following table summarizes the commands needed to enable (turn on) and disable (turn off) the CONTROL-C routine in each of these contexts. BASIC-in-ROM POKE 530.1 - turns CONTROL-C off POKE 53Ø, Ø - turns CONTROL-C on 9-Digit Extended BASIC POKE 2073, 96 - turns CONTROL-C off POKE 2073, 173 - turns CONTROL-C on All keyboard polling is accomplished through the I/O port for the polled keyboard. This port is located at memory location 57088 (address DF00 in hexadecimal). The technique of polling the keyboard consists of two steps (a POKE and a PEEK): #### 1. address a row This is accomplished by the statement POKE 57Ø88, row address For example, the statement POKE 57088, 247 addresses R3 (see Fig. 9). 2. determine key closures within the column. If, after addressing a specific row, we enter the statement K = PEEK(57088) then the value of K will summarize the column addresses corresponding to key closures within that row. The value of K is the logical AND of the column addresses in which keys are depressed. For two integers N1 and N2 the value of N1 AND N2 can be determined in the following manner. Express both N1 and N2 in binary notation. If necessary add leading zeros to the binary representation of one or the other numbers so that both numbers are the same length. The binary representation of N1 AND N2 has a 1 in any position that both N1 and N2 have a 1 and has $\emptyset$ 's elsewhere. #### Example 147 (decimal) = 10010011 (binary) 89 (decimal) = 01011001 (binary) Thus the binary representation of 147 AND $89 = \emptyset\emptyset\emptyset1\emptyset\emptyset\emptyset1$ . Since $\emptyset\emptyset\emptyset1\emptyset\emptyset\emptyset1$ (binary) = 17 (decimal), the value of 147 AND 89 is 17. For more information on logical operations refer to the OSI BASIC Reference Manual. For example, suppose a program contains the following two consecutive statements 100 POKE 57088, 247 11Ø K = PEEK(57Ø88) K = 127 indicates that $\langle S \rangle$ is depressed. If K = 191 then $\langle D \rangle$ is depressed. If K = 63 then both $\langle S \rangle$ and $\langle D \rangle$ are depressed (since 63 is the logical AND of 127 and 191). If K is expressed as an 8 bit binary number (with leading zeros if necessary), then zeros occur in exactly those columns in which keys are depressed. In the above example, the binary representation of 63 is $\emptyset\emptyset$ 11111. There are zeros in the first two columns-the columns in which the <D> are located. The following sample program illustrates these keyboard polling techniques in controlling movement on the screen. PROBLEM: Write a BASIC program which will allow the user to control the movement of a small tank by depressing specified keys. Depressing one of the keys <1>, <2>, <3> and <4> should cause the tank to move to the right, up, left and down respectively. Depressing <S> should terminate the program. SOLUTION: There are eight different tank figures available in the graphics character set (characters 248-255) printed in Appendix 8. Since we shall not allow diagonal movement in this program, we will only use characters 248, 250, 252 and 254. The following is a list of the most important variables used in the following program. - T determines the tank figure displayed - L specifies the location of the tank on the screen - D1 contains the distance of the tank from the right hand edge of the screen - D2 contains the distance of the tank from the top of the screen - D3 contains the distance of the tank from the left hand edge of the screen - D4 contains the distance of the tank from the bottom of the screen - K3 summarizes the key closures in row R3 - K7 summarizes the key closures in row R7 A number of comments have been included to the right of the following listing to explain the logic of the program. These comments should not be included when you type the program. | 1Ø | REM-TANK MOVER | Replace line 30 by | |----|----------------------|--------------------| | 2Ø | REM-DISABLE CNTL-C | POKE 2073, 96 for | | 3Ø | POKE 53Ø, 1 | 9-Digit BASIC | | 4Ø | REM-CLEAR THE SCREEN | | | 5Ø | FOR I=1 TO 30 | | | 6Ø | PRINT | | | 7Ø | NEXT | | | 8Ø | REM-SELECT TANK 252 | | | | | | | 9Ø | T = 252 | | |------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1ØØ | REM-LOCATE AT CENTER | | | 11Ø | REM-OF SCREEN | | | 12Ø | L = 53776 | G 11 52777 :- 1211- | | 14Ø | REM-SET DISTANCES | Cell 53776 is 12 cells | | 15Ø | REM-TO EDGES | from right and top, | | 16Ø | D1=12: D2=12 | 11 cells from left and | | 17Ø | D3=11:D4=11 | bottom. | | 18Ø | REM-DISPLAY TANK | | | 19Ø | POKE L, T | | | 200 | REM-POLL R3 | | | 210 | POKE 57Ø88, 247 | | | 220 | K3 = PEEK(57088) | | | 230 | REM-STOP ON <s></s> | | | 240 | IF K3=127 then 9000 | | | 25Ø | REM-POLL R7 | | | 26Ø | POKE 57Ø88, 127 | | | 27Ø | K7 = PEEK(57088) | | | 280 | REM-CHECK DIRECTION | | | 29Ø | IF K7=127 THEN 1000 | | | 3ØØ | IF K7=191 THEN 2000 | | | 31Ø | IF K7=223 THEN 3ØØØ | | | 32Ø | IF K7=239 THEN 4ØØØ | | | 33Ø | REM-GO TRY AGAIN | No match was found. | | 340 | GOTO 2ØØ | | | 1000 | REM-1 PRESSED | Key <1> was pressed. | | 1010 | REM-SELECT TANK | | | 1020 | T = 25Ø | Tank 250 points right. | | 1030 | REM-ERASE TANK | | | 1040 | POKE L, 32 | | | 1050 | REM-UPDATE L | Increment L by 1 to move | | 1060 | IF D1>Ø THEN L=L+1 | to right if not at edge. | | 1Ø7Ø | REM-UPDATE D3 AND D1 | Increment D3 by 1 and | | 1080 | IF D1>Ø THEN D3=D3+1 | decrement D1 by 1 if | | 1090 | IF D1>Ø THEN D1=D1-1 | not at edge. | | 1100 | REM-REDRAW TANK | | | 111Ø | GOTO 18Ø | | | 2000 | REM-2 PRESSED | Key<2> was pressed. | | 2Ø1Ø | REM-SELECT TANK | | | 2020 | T = 248 | Tank 248 points up. | | 2030 | REM-ERASE TANK | STATE OF THE | | 2Ø4Ø | POKE L, 32 | | | 2Ø5Ø | REM-UPDATE L | Decrement L by 32 to move | | | IF D2>Ø THEN L=L-32 | up if not at edge. | | 2060 | REM-UPDATE D4 AND D2 | Increment D4 by 1 and | | 2070 | IF D2>Ø THEN D4=D4+1 | decrement D2 by 1 if | | 2080 | IF D2>Ø THEN D2=D2-1 | not at edge. | | 2090 | REM—REDRAW TANK | 1101 11 1 1 2 | | 2100 | GOTO 180 | | | 2110 | REM-3 PRESSED | Key <3> was pressed. | | 3000 | REM—SELECT TANK | no, and prosent | | 3Ø1Ø | | Tank 254 points left. | | 3020 | T = 254 | Tank 204 points fort. | | 3Ø3Ø | REM—ERASE TANK | | | 3Ø4Ø | POKE L, 32 | Decrement L by 1 to move | | 3Ø5Ø | REM-UPDATE L | left if not at edge. | | 3Ø6Ø | IF D3>Ø THEN L=L-1 | ion in not at cago. | | | | | | 3Ø7Ø<br>3Ø8Ø | REM-UPDATE D1 AND D3 IF D3>Ø THEN D1=D1+1 | Increment D1 by 1 and decrement D3 by 1 if | |--------------|-------------------------------------------|--------------------------------------------| | 3Ø9Ø | IF D3>Ø THEN D3=D3-1 | not at edge. | | 3100 | REM-REDRAW TANK | | | 3100 | GOTO 18Ø | | | 4ØØØ | REM-4 PRESSED | Key <4> was pressed. | | 4010 | REM-SELECT TANK | | | 4020 | T = 252 | Tank 252 points down. | | 4030 | REM-ERASE TANK | | | 4040 | POKE L, 32 | | | 4050 | REM-UPDATE L | Increment L by 32 to move | | 4Ø6Ø | IF D4>Ø THEN L=L+32 | down if not at edge. | | 4Ø7Ø | REM-UPDATE D2 and D4 | Increment D2 by 1 and | | 4Ø8Ø | IF D4>Ø THEN D2=D2+1 | decrement D4 by 1 if | | 4Ø9Ø | IF D4>Ø THEN D4=D4-1 | not at edge. | | 4100 | REM—REDRAW TANK | | | 411Ø | GOTO 18Ø | | | 9ØØØ | REM—TIME TO QUIT | Replace line 9020 by | | 9Ø1Ø | REM-RESTORE CNTL-C | POKE 2073, 173 for | | 9020 | POKE 53Ø, Ø | 9-Digit BASIC. | | 9Ø3Ø | END | | To facilitate entering this program you might skip all lines beginning with REM, since these lines do not affect the operation of the program. It is still good programming practice to use REM's throughout your programs to document them. Once you have successfully entered the preceding program and feel that you understand the logic, there are several variations you might attempt. - 1. Eliminate the variables D3 and D4. D1 and D2 can be used to check all four edges. - 2. Modify the program to allow diagonal moves. - 3. Convert the program to a two player game with each player controlling a different figure and one of the players trying to catch the other. This program gives an introduction to the potential uses of the polled keyboard and graphics display capabilities of the Challenger 1P. Very elaborate arcade games can be written to run on the Challenger 1P. Many such games are available from Ohio Scientific on cassette and diskette for use on your C1P. # PRINTER COMMUNICATIONS The Challenger 1P Series 2 computer is provided with a switch selectable audio cassette, 300 baud modem and printer interface. Figure 1 in section three gives two views of the rear panel of the Challenger 1P. In order to interface a serial printer with the Challenger 1P, the printer cable should be connected to the printer output port located on the rear panel of the C1P and the selector switch should be rotated to the center (printer) position. The method used for output to the printer depends upon whether BASIC-in-ROM or 9-Digit Extended BASIC under OS-65D is used. ## BASIC-IN-ROM-PRINTER USE When BASIC-in-ROM is being used with the Challenger 1P, output to the printer is handled in the same manner as output to cassette. If the command SAVE is entered, then all subsequent output which would normally appear on the screen is routed to both the screen and the printer. Set the rotary switch to printer, see page 7. Output will continue to be routed to the printer as well as the screen until the user enters the following sequence of commands: LOAD <RETURN> <SPACE> <RETURN> These two commands terminate output to the printer in the same way that they terminate output to the cassette recorder when the switch is set for cassette input/output. For example, a program in the workspace can be listed on the printer by the following series of commands: SAVE LIST LOAD <SPACE> As usual, each of these commands should be followed by <RETURN>. The program will begin listing after the command LIST is entered. The command LOAD should be entered after the LISTING is complete. If the printer is not on line or is connected incorrectly (or if the selector switch is turned to printer when no printer is connected) then the computer will stall when the command LIST is entered until the problem is corrected, the switch is reset or <BREAK> is depressed. The results of any PRINT statements are displayed on both the screen and the printer. Note the printer output is 300 baud, like the cassette output. # 9-DIGIT EXTENDED BASIC UNDER OS-65D-PRINTER USE When OS-65D is being used with the C1P, output can be directed to the printer by changing the output flag. This is accomplished by a disk operating system command. The following illustrates the method of accomplishing this: DISK!"IO ,Ø1"- this directs subsequent output to the printer only DISK!"IO ,02" - this directs subsequent output to the screen only DISK!"IO ,03"- this directs subsequent output to both the printer and the screen The default mode sets the output flag to send output to the screen. The output flag is automatically reset to "\$2" (the screen) whenever the computer encounters a syntax error or an abnormal condition such as a CONTROL-C halt to a listing or run of a program. For the purposes of printer output, setting the output flag to " $\emptyset$ 3" has very much the same effect as entering SAVE when using BASIC-in-ROM. The output to the printer can be terminated by resetting the output flag to " $\emptyset$ 2" with the command DISK!"IO, $\emptyset$ 2." Under OS-65D the command LIST#1 can be used to list the contents of the workspace on the printer without the necessity of changing the output flag with a DISK!"IO command. The program is listed only on the printer (not on the screen) when this command is entered. Printer output is also accomplished by PRINT#1, "STATEMENT." Another method to output to the printer is to use a POKE8994,1 for output to the printer only and POKE8994,3 for output to the screen and the printer simultaneously. A complete discussion of the I/O capabilities of the C1P under OS-65D is beyond the scope of this manual. The interested user is referred to the OS-65D USER's MANUAL for a complete treatment of this topic. If the user adds the 630 I/O Expander to his Challenger 1P, the choice between modem and high speed printer ports is under program control rather than manual control by a switch. # MODEM AND TERMINAL COMMUNICATIONS The Challenger 1P can be used as a terminal to communicate with another computer over a telephone. In order to use the Challenger 1P in this manner requires a modem (short for "modulator-demodulator"). This is a hardware item used to connect a telephone to your computer. The computer signals the modem to generate or receive tones which are carried over the telephone lines. Ohio Scientific offers a competitively priced modem suitable for use with the Challenger 1P, catalog item AC-11P. An RS-232 port is provided for connecting a modem to the rear of the Challenger 1P. In order for the Challenger 1P to communicate with the modem, the selector switch on the rear panel of the computer must be set to the right (modem) position. The following is a general summary of the sequence of steps necessary to use the C1P as a terminal: - 1. Connect a modem to the modem port and set the selector switch on the back of the C1P to the right hand position. The modem should be set to full duplex and originate mode. - 2. Load the modem program provided by Ohio Scientific into the C1P. When it is loaded the computer will respond READY. Phone numbers of local modem services are available from your local OSI dealer. - 3. Dial the number of the remote computer. When the number dialed answers you should hear a high pitched tone. Insert the phone in the modem and follow the instructions displayed on the screen. The computer called will probably require that you enter a user code and password. When the Challenger 1P is equipped with the 630 I/O Expander the selector switch on the rear panel of the computer is removed. For these models of the C1P, a bit of the special control register located at memory location 63456 (address F7E0 in hexadecimal) is used to select between printer and modem I/O. For example, POKE 63456,0 selects the printer and POKE 63456,4 selects the modem. NOTE: See page 77 for more information: # **JOYSTICKS AND KEYBOARDS** ## **JOYSTICKS** The joysticks provide realistic and convenient input devices for games and control. When the joysticks are connected (as shown in Figure 1) and enabled, they generate a digital signal which may be read by the computer. Only one joystick may be enabled at a time, this is accomplished via a POKE statement. The joysticks are designated A and B, and the POKEs to enable them are: POKE 6344Ø,127 enables Joystick A POKE 6344Ø,224 enables Joystick B As seen in Figure 12, each joystick offers nine possible unique physical positions, labeled A-I. In addition to these positions, each joystick has an "action key," which effectively doubles the possible combinations for each joystick. Detection of the various positions, for a particular joystick, is accomplished by the following procedure; First, POKE on the joystick that you wish to "read," for example POKE 63440,127 to detect Joystick A outputs. Next, PEEK location 63440 with one catch. In order to avoid unintentional interaction between the joysticks, it is necessary to use the logical function OR on the value PEEKed at 63440, for example, PEEK (63440) OR 224 for joystick A [PEEK (63440) OR 7, for joystick B]. The effect of this command is that the computer will ignore any bit patterns generated by inadvertent use of joystick B while monitoring the output of joystick A. Figure 11 lists all possible decimal output values from the joysticks, including values with and without the "action key" depressed. | | JOYS | TICK A | JOYS | ГІСК В | | | |---|--------------------------------|----------------------|--------------------------------|----------------------|--|--| | | ACTION KEY<br>NOT<br>DEPRESSED | ACTION KEY DEPRESSED | ACTION KEY<br>NOT<br>DEPRESSED | ACTION KEY DEPRESSED | | | | A | 239 | 238 | 223 | 95 | | | | В | 235 | 234 | 207 | 79 | | | | С | 251 | 250 | 239 | 111 | | | | D | 243 | 242 | 175 | 47 | | | | Е | 247 | 246 | 191 | 63 | | | | F | 245 | 244 | 183 | 55 | | | | G | 253 | 252 | 247 | 119 | | | | Н | 237 | 236 | 215 | 87 | | | | I | 255 | 254 | 255 | 127 | | | Figure 11: Decimal Values Returned by Joysticks Figure 12: Joystick The following program, called Joystick Arrows, serves two purposes. First, it is a concise example of "how-to" program in order to use the joysticks. Second, it can serve as the basis of your own game programs. Figure 13 depicts the various characters used by Joystick Arrows. Figure 14 is the flowchart for this program. Clean out the workspace of your computer (use a NEW), and enter the program exactly as it appears on page 47. After you have it working, store it on tape or disk for future reference and possible modification. While experimenting with Joystick Arrows, you may find that the arrow occasionally disappears. This happens because the program does not check to see whether the location (variable P) actually corresponds to a screen location. As an exercise, try to modify Joystick Arrows to prevent the arrow from going off the screen. Figure 13: Characters Used in Joysticks Arrows Program Figure 14: Flow Chart for Joystick Arrows #### JOYSTICK ARROWS PROGRAM | 10 FORS | C-1 T | 0 25. | DDINIT | NEYT | |---------|-------|-------|--------|------| - 2Ø AP=-32: BP=-31: CP=1: DP=33 - 3Ø EP=32: FP=31: GP=-1: HP=-33: IP=Ø :REM MOVEMENT 4Ø A=239: B=235: C=251: D=243 :REM JOYSTICK A - 50 E=247: F=245: G=253: H=237: I=255 :REM POSITIONS - 6Ø P=53711: BLANK=96 - 7Ø POKE6344Ø, 127: POKEP,16 - 110 R=PEEK(63440) OR 224 - 120 IF R=IP THEN 110 - 200 REM POSITION A? - 210 IF R=A THEN 230 - 220 GOTO 300 - 23Ø POKEP,BLANK 25Ø P=P+AP: POKEP,16 - 300 REM POSITION B? - 310 IF R=B THEN 330 - 320 GOTO 400 - 33Ø POKEP.BLANK - 35Ø P=P+BP: POKEP,17 - 400 REM POSITION C? - 41Ø IF R=C THEN 43Ø - 420 GOTO 500 - 43Ø POKEP.BLANK - 45Ø P=P+CB: POKEP,18 - 500 REM POSITION D? - 510 IF R=D THEN 530 - 52Ø GOTO 6ØØ - 53Ø POKEP,BLANK - 55Ø P=P+DP: POKEP.19 - 600 REM POSITION E? - 61Ø IF R=E THEN 63Ø - 62Ø GOTO 7ØØ - 63Ø POKEP,BLANK - 65Ø P=P+EP: POKEP,2Ø - 700 REM POSITION F? - 710 IF R=F THEN 730 72Ø GOTO 8ØØ - 73Ø POKEP,BLANK - 75Ø P=P+FP: POKEP,21 - 800 REM POSITION G? - 81Ø IF R=G THEN 83Ø - 82Ø GOTO 9ØØ - 83Ø POKEP,BLANK - 85Ø P=P+GP: POKEP.22 - 900 REM POSITION H? 910 IF R=H THEN 930 - 92Ø GOTO 11Ø - 93Ø POKEP,BLANK - 95Ø P=P+HP: POKEP,23 - 999 GOTO 110 - 1ØØØ END - :REM CLEAR THE SCREEN - :REM CONSTANTS FOR :REM CHECK JOYSTICK A #### **KEYPADS** The keypads function on all C1P's equipped with the optional 630 IO expander board. Two keypads, designated A and B, plug into the connectors shown in Figure 1. Several steps are involved in using the keypads. The keypad memory location is 63440. Figures 15 and 16 detail the POKEs and Peeks used with the keypads. The following short program is presented as an example of keypad programming. Suppose that you want to determine if the "2" key on keypad A has been depressed. The following routine will do just that. 1Ø POKE 6344Ø,239 20 IF PEEK(63440) = 191 THEN PRINT "2 PRESSED" 3Ø GOTO 2Ø The phrase "2 PRESSED" will be printed on the screen whenever the "2" key on keypad A is pressed. You may ask, "why 239 in line 100 and 191 in line 200?" For the answers, examine Figure 15. Note that the row containing "2" must be "turned on" (by a POKE63440,239) and a "2" output is then indicated by the value at the top of the column containing "2", or C6=191). That's why 239 and 191. The following program illustrates one method to recognize all twelve keys of keypad A under software control. This type of routine would be useful in arithmetic quiz and drill type programs or as a numeric input routine for an accounting package and many others. | 1Ø | X = 63440 | | |-----|-------------|------------------------| | 1ØØ | POKEX,239 | | | 1Ø5 | Y = PEEK(X) | :REM CHECK ROW 4 | | 11Ø | IF Y=127 | THEN PRINT "1":GOTO 10 | | 120 | IF Y=191 | THEN PRINT "2":GOTO 1Ø | | 13Ø | IF Y=223 | THEN PRINT "3":GOTO 1Ø | | 200 | POKEX,247 | | | 2Ø5 | Y = PEEK(X) | :REM CHECK ROW 3 | | 21Ø | IF Y=127 | THEN PRINT "4":GOTO 10 | | 22Ø | IF Y=191 | THEN PRINT "5":GOTO 10 | | 23Ø | IF Y=223 | THEN PRINT "6":GOTO 10 | | 300 | POKEX,251 | | | 3Ø5 | Y = PEEK(X) | :REM CHECK ROW 2 | | 31Ø | IF Y=127 | THEN PRINT "7":GOTO 10 | | 320 | IF Y=191 | THEN PRINT "8":GOTO 10 | | 33Ø | IF Y=223 | THEN PRINT "9":GOTO 10 | | 4ØØ | POKEX,253 | | | 4Ø5 | Y = PEEK(X) | :REM CHECK ROW 1 | | 410 | IF Y=127 | THEN PRINT "*":GOTO 10 | | 420 | IF Y=191 | THEN PRINT "Ø":GOTO 1Ø | | 430 | IF Y=223 | THEN PRINT "#":GOTO 10 | | 5ØØ | GOTO 1Ø | | | | | | Figure 15: Keypad A Figure 16: Keypad B # AC REMOTE CONTROL SECURITY The installation of the 630 I/O Expander on the Challenger 1P makes it possible to use the C1P to control lamps and appliances throughout the home and to monitor a home security system. These popular applications are described in this section. Ohio Scientific offers the AC-12P remote control starter set including an OSI modified BSR X-1Ø command console, two lamp modules, two appliance modules and software. Ohio Scientific offers a special home control OS-65D, designated HC1, floppy disk operating system with the following capabilities: - 1. Compatible with most normal BASIC programs. - 2. Supports the time of day and count down event timer. - 3. Supports up to 16 separate channels of AC remote control (requires the CA-21 option). - 4. includes proportional control of lighting. - 5. Constantly maintains on/off sensor detection of up to 48 inputs. - 6. Disk event logging by time or event. The C1P MF with the 630 incorporates an internal real time clock. Thus the home control operating system may always know what time it is and maintains a count down timer which can be used to cause a user specified action to occur at a specified time (such as "two hours from now turn on the front porch light"). The AC-12P remote system can be simply used to turn a few things on or off or it can be expanded to a full blown computerized home control system. Installation of the AC-12P on Challenger 1P is accomplished by connecting the modified BSR X-1Ø command console to the AC-12P interface jack on the rear panel of the Challenger 1P (see Figure 1 in section 3). Signals sent to the command module by the computer are transmitted over existing home wiring to special light and appliance modules which plug into wall sockets. For further details refer to the documentation included with the AC-12P. The Challenger 1P can be interfaced with a Fyrnetics Lifesaver Home Security System. This system, and supporting software, is available from Ohio Scientific as AC-17P. The Fyrnetics unit scans various security monitor inputs and audibly registers any fault condition. In addition to the audible signal, four conditions are registered at screw connections at the rear of the Fyrnetics unit. The Ohio Scientific software monitors these four connectors via a 16-pin DIP cable. When a fault is detected by software, any number of different actions may be taken. The demonstration diskette included with the system reflect the simplest approaches. The AC-17P is connected to your Challenger 1P at port J3 on the rear panel (see Figure 1 in section three). For more detail see the instructions included with the AC-17P unit. ## PARALLEL I/O ## **EXTERNAL SWITCHES, ALARMS, OR INDICATORS** In AC control and home security systems, there is often need to sense switch openings or closings. Relay contacts might indicate an air-conditioner "on" for an energy management system; an open window might be read as a set of open contacts to a home security system. Individual imagination is the limit. The C1P system provides (in the CA-21 package) the ability to sense 48 separate remote contact-pairs. Each of these contact-pairs (lines) is to be at either Ø volts or 5 volts (standard TTL levels). When these lines are computer driven (used for output), a maximum of two TTL devices can be driven at a time. If devices other than OSI peripheral devices are used, be cautioned to use good circuit practices in interfacing circuits. The input lines are grouped as 6 sets of 8 lines (6x8=48), or 6 input registers. Associated with each input register (group of 8 lines) is a mask register (tells which of the 8 lines to ignore) and an active state register (tells whether a 5 volt or $\emptyset$ volt signal is to be the chosen active state). The state of each line can be sensed by examining the register bit which reflects the state of the connected line. In the case of windows, for example, it might be desired to identify the active state as an open window in one program but in a different program to have the active state reflect a closed window. Which one is desired will depend on the program. The associated registers, i.e., the mask register and active state register, are used by the real time monitor, RTMON, to systematically scan the input lines. When an input line becomes active, RTMON's services are requested (in the same manner as the count down timer requested service). Once again, discussion of how RTMON uses these associated registers will be put off until after examination of the hardware which is used to support it. The associated registers are memory locations which are examined to determine how to interpret switch positions. In contrast, the hardware registers directly indicate line status, 5 volts or Ø volts. The hardware registers also indicate whether a set of lines is to receive signals (be read) or whether output signals should be sent to turn on/off devices (to be written to). External switches which can be used to provide 5 volts or Ø volts are connected (through back panel connectors, Figure 1) to a Peripheral Interface A dapter (PIA). The PIA presents groups of input lines for input or output of signals. These input or output lines are addressed in groups of 8 lines. The PIA is a single integrated circuit. Its organization and use are best explained in terms of its addressing, i.e., where the computer looks to input or output data. For this purpose, a map is created. ## **PIA REGISTERS** Map of the hardware registers used for input and output. | DATA RE | GISTER<br>DECIMAL | | | CONTROL DECIMAL | REGISTER<br>HEX | | | |----------|-------------------|---------|-------------------|-----------------|-----------------|--|--| | LOCATION | LOCATION | 7 | Ø BIT | LOCATION | LOCATION | | | | C7Ø4 | 50948 | Port 1A | | | | | | | | | | CTRL Register | 50949 | C7Ø5 | | | | | | | For Port 1A | | | | | | C7Ø6 | 5Ø95Ø | Port 1B | | | | | | | | | | CTRL Register | 5Ø951 | C7Ø7 | | | | | | | For Port 1B | | | | | | C7Ø8 | 5Ø952 | Port 2A | The second second | | | | | | | | | CTRL Register | 50953 | C7Ø9 | | | | | | | For Port 2A | | | | | | C7ØA | 5Ø954 | Port 2B | | | | | | | | | | CTRL Register | 5Ø955 | C7ØB | | | | | | | For Port 2B | | | | | | C7ØC | 5Ø956 | Port 3A | | | | | | | | | | CTRL Register | 5Ø957 | C7ØD | | | | | | | For Port 3A | | | | | | C7ØE | 5Ø958 | Port 3B | | | | | | | | | | CTRL Register | 5Ø959 | C7ØF | | | | | | | For Port 3B | | | | | | | | | | | | | | Each port A, port B pair is called a Peripheral Interface Adapter or PIA. These ports provide a way to enter data from the outside world into the computer and to respond with computer-generated signals to the outside. The PIA also holds or latches these input and output signals until the computer is ready to receive them (for input) or until the outside devices can utilize them (for output). Each of the two ports on a PIA (port A and port B) contains 8 lines which may be individually used for input or output. The CA-21 option contains three PIA's. It is connected to the C8P computer by a 16 pin connector, J2, shown in Fig. 1. External devices are connected to the three sets of input port pairs. Since three sets of port A-port B pairs are accommodated (each port 8 bits wide), there are 3\*2\*8=48 lines available for external connection. The operating system will initialize the scan of PIA's to include a complete CA-21 option group of PIA's as a default. Scanning fewer PIA's or scanning the PIA at 63232 decimal (F700 hex) will require making the changes (POKEs) just illustrated. For example, to scan all 48 lines starting at 5 $\emptyset$ 948 decimal (C7 $\emptyset$ 4 hex), all six data registers (ports 1A, 1B, 2A, 2B, 3A, 3B) must be scanned along with six control registers. Therefore, location 89 $\emptyset$ 2 decimal must be loaded with 12-1=11 (the number of scanned registers minus one). These POKEs can be accomplished as POKE 89Ø2,11: REM LOOK AT ALL 6 DATA AND 6 CONTROL REGISTERS POKE 8909,4: REM LOWER HALF OF C704 PIA PORT ADDRESS POKE 8910,199: REM SINCE C7 hex=199 decimal (Only decimal values may be used with POKEs.) With these POKEs, RTMON will check for an active state. The foregoing has been a review of the connections to the PIA. Now look at the operation of the PIA. The ports (port A and port B) serve two purposes. Each port accommodates input or output signals. Additionally, these port A and port B pairs serve as data direction registers. When serving as a data direction register, the port specifies which bits serve as input and which serve as output bits. The action of the port, whether it serves as an input/output port or as a data direction register, is set by yet another register, called the control register. A control register is associated with each port. If the control register is POKEd with zeros, then the port serves as a data direction register. When the control register is POKEd with a 4, the port reverts to its data handling function. By using a data port to serve as a data direction register, the number of hardware connections is reduced. But to understand its increased complexity of function requires paying the price of additional work. To illustrate, for example, the use of the PIA to read port 1A at location 50948 (C704 hex), the steps are #### 1. POKE 5Ø949,Ø This address, one beyond the PIA port 1A address, is the control register for port 1A. A zero in the control register will allow the use of the PIA port 1A address for its alternate use, designating which bits are input or output (called a data direction register). A one indicates output, a zero an input. At the completion of this POKE, the control register contains and the port 1A will serve as a data direction register. Therefore, the command #### 2. POKE 5Ø948,127 will place the bit pattern Ø111 1111 into the data direction register. The data direction register will now be Bit 7, the leftmost bit of the data direction register contains a $\emptyset$ indicating that its corresponding line will be an input line. The other register bits (bits $\emptyset$ to 6) are 1's, indicating that their corresponding data lines will serve as output lines. 3. The PIA port 1A is now ready to revert to its data handling function. This is achieved by #### POKE 5Ø949,4 which commands the control register for port 1A to perform its I/O function. 4. Bit 7, the leftmost bit, was previously set as an output bit in step 2. This output can be set to a high value by #### POKE 5Ø948,64 This is a bit pattern 1000 0000. The data register (the alternate function of the port) will now contain Likewise bit 7 could have been set to a zero by #### POKE 5Ø948,Ø 5. If it were desired to read bit 6, which was designated as an input bit, the result could be where 64 has a bit pattern \$100 0000. The 1 in the bit pattern corresponds to the desired line. To the user, location 50948 appears as | | 7 | 6 | 5 | 4 : | 3 2 | 2 1 | Ø | bit | |-------|---|--------------|---|-----|-----|-----|---|-----| | 5Ø948 | X | 1<br>or<br>Ø | x | х | х | х | × | х | where X indicates that A doesn't care about the value. By ANDing the contents of 50948 with the value #### Ø 1 Ø Ø Ø Ø Ø Ø only the value of bit 6 will be examined. If bit 6 of 50948 is a zero, then BIT6=0; if bit 6 is 1, then BIT6=64. Testing for zero or non-zero value of BIT6 provides a convenient programming test to determine the bit 6 input line state. The socket pin connections are shown in appendix B; socket mating information is also provided. A short program to make all lines for port 1A into read (input) lines and all lines for port 1B into write (output) lines follows: - 5 REM PIA INITIALIZATION SUBROUTINE AT 1000 - 1Ø GOSUB 1ØØØ - 20 INPUT "SIDE (A OR B)",C\$ - 3Ø IF C\$="A"GOTO 1ØØ - 4Ø IF C\$="B"GOTO 2ØØ - 5Ø GOTO 2Ø - 100 IF A\$="I"GOTO 150 - 11Ø INPUT "OUTPUT TO A";K - 12Ø POKE X,K - 13Ø GOTO 2Ø - 15Ø PRINT"INPUT TO A IS"; PEEK (X) - 16Ø GOTO 2Ø - 200 IF B\$="I"GOTO 250 - 21Ø INPUT "OUTPUT TO B";K - 22Ø POKE X+2,K - 23Ø GOTO 2Ø - 25Ø PRINT "INPUT TO B IS"; PEEK (X+2) - 26Ø GOTO 2Ø - 1000 INPUT "STARTING ADDRESS OF PIA";X - 1010 INPUT "A SIDE I OR O"; A\$ - 1Ø2Ø INPUT "B SIDE I OR O"; B\$ - 1030 POKE X+1,0:POKE X+3,0: REM SETTING CTRL REGISTER TO ZERO - 1040 IF A\$="I" THEN POKE X,0 : REM PERMITS SETTING DATA DIRECTION REGISTER - 1Ø42 IF A\$="I" THEN GOTO 1Ø5Ø - 1Ø45 POKE X,255 : REM IF NOT INPUT, THEN SET AS OUTPUT - 1050 IF B\$="I" THEN POKE X+2,0 - 1Ø52 IF B\$="I" THEN GOTO 1Ø6Ø - 1Ø55 POKE X+2, 255 - 1060 POKE X+1,4:POKE X+3,4: REM CTRL REGISTER TO FORCE I/O - 1070 RETURN Multiple lines may be checked at one time. The home security system addressed at 63232 (F700 hex) is also a PIA port. It is one of two ports. Two ports (of 8 bits each) are available, with the first 4 bits being reserved as: A program to handle this device is similar to the previous programs. For example, to check for a fire alarm 10 REM SET PORT A AS INPUT, LOOK AT BIT 0, THE FIRE ALARM BIT 2Ø POKE 63233,Ø: POKE 63232,1: POKE 63233,4 3Ø IF PEEK (63232) = Ø THEN GOTO 1ØØ 40 GOTO 20 This program segment will continually look at the input port and check for the bit assigned by OSI to fire alarm checks. # **CONNECTION OF SIXTEEN PIN BUS DEVICES** Ohio Scientific is pleased to introduce a unique new product line—The 16 Pin I/O BUS. With this system, it is possible to add up to eight special function boards while occupying only one backplane slot. This is made possible by a novel BUS extension method which allows decoding and timing signals plus eight bits of data to be carried on standard, inexpensive 16 pin ribbon cables. Up to eight inexpensive 16 pin cables with standard DIP connectors may be attached to a single CA-20 board which in turn occupies one slot of the standard Challenger backplane. Alternately, one 16 pin I/O BUS cable may be attached to the A-15 board at the rear of all CIP products equipped with a 630 board. Currently, five HEAD END CARDS are available for interconnection to the system via the CA-2Ø or CA-15 boards. ## COMPUTER INTERFACE TO SIXTEEN PIN I/O BUS The 16 pin I/O BUS may be attached to the computer via two different boards—the CA-15 or the CA-20. The descriptions of these boards are as follows: ## **CA-15 BOARD** The CA-15 board is a standard accessory interface installed on the following Ohio Scientific systems: C4P-MF, C4P-DMF, and C8P-DF. This is also installed on C1P's equipped with a 630 option. The CA-15 is mounted at the rear of the computer and contains the following interface connection: Joystick and numeric keypad Modem and serial printer Sixteen PIA lines (normally used for the Home Security system—AC-17P) Sixteen Pin I/O BUS The interconnect for the Sixteen Pin I/O BUS is simply a 16 pin DIP socket. To use the BUS, the only thing necessary is to attach one end of the 16 pin ribbon cable to the CA-15 board and the other end of the cable to one of the HEAD END CARDS. Please note that some of the HEAD END CARDS require more power than may be practically carried via the ribbon cable alone. Therefore, some of the cards require auxiliary power supplies. ## CA-20 BOARD The CA-20 board contains all the necessary logic to decode eight distinct HEAD END CARD interfaces. The actual interconnect, as with the CA-15, is via simple 16 pin DIP sockets and standard 16 pin ribbon cables. The CA-20 board also requires one slot of the computer's backplane. But remember, from this one slot access is gained to a maximum of eight accessory boards. The CA-20 is recommended for use in the Ohio Scientific C2 series and C3 series computers. It can also be installed in C4P and C8P series systems with some modification to the CA-15 interface. The CA-20 can be used in conjunction with C1P computers equipped with the OSI bus expander and 620 option. Since the logic required for the I/O BUS interface is simple, an additional feature was added to the CA-2Ø board—a crystal controlled "time-of-day" clock (hardware) subsystem. The operation of the clock, excepting reading time and setting time, is totally independent of the host computer. As a matter of fact, with the included on-board, autorecharging, battery back-up, the computer may actually be turned off for several months without losing time. The features of the clock subsystem are as follows: Hours, minutes, seconds and 1/10 seconds Day of week Day of month Month of year Four Year calendar In the C2 and C3 series computers, the CA-20 board can actually control the power cycling of the entire computer when equipped with an optional power sequencer package. This means a time (month, day, hour, etc.) may be preset within the clock subsystem and when that preset time agrees with the actual time, A.C. power is applied to the entire computer system through the power sequencer. At a later time, the system's A.C. power may also be removed and the system shut down under software/clock subsystem control. For applications where the clock subsystem is not required, the CA-20A will perform all the Sixteen Pin I/O BUS functions associated with full-feature CA-20. #### **HEAD END CARDS** HEAD END CARDS is a general name used to describe any or all of the special function boards which attach to the Ohio Scientific Sixteen Pin I/O BUS. There are currently five such boards and, with the exception of the CA-22, they will only interface with the computer via the Sixteen Pin I/O BUS. Please note, as detailed earlier, a CA-15 or CA-20 board must be used at the "computer end" of the Sixteen Pin I/O BUS to complete the interface. In the following pages a brief product and application description of the currently available HEAD END CARDS will be presented. ## THE CA-21 BOARD—BIT SWITCHING AND SENSING The CA-21 is a 48 line parallel I/O board featuring three 6821 PIAs (peripheral interface adapters) and prototyping/interconnect areas. The use of PIAs in the design allows for maximum interface versatility as any one of the 48 I/O lines may be configured as either an input or an output. As outputs, each line is capable of driving a minimum of one standard TTL load. Additional versatility is added because 24 of the lines, when configured as outputs, may simultaneously function as inputs. This feature, although somewhat confusing, is extremely useful for applications such as switch matrix decoding. Each of the 48 lines is brought out to two foil pads (suitable for wire wrap stakes) as well as a location on one of four 12 pin Molex-type female edge connectors. There are also eight 16 pin DIP socket locations which are intended for use as prototyping areas. Additionally, the 12 PIA "hand-shaking" lines are brought to 12 single foil pads. The CA-21, with proper buffering, may be used for virtually any computer controlled bit switching or bit sensing application imaginable. With a full complement of eight CA-21s interfaced via the CA-20, a total of 384 individually controllable I/O lines are possible! An interesting application using one CA-21 board would be a complete, if somewhat slow, emulation of the standard Ohio Scientific BUS. A more practical application might be augmenting the standard Home Security System (AC-17P) with "hardwired" sensors. One type of sensor easily added is a standard window "perimeter detector." This could be done with commercially available adhesive foil tape. A break-in (through a broken window) could then be detected by sensing a break in the foil tape. Another useful application that could be set up in concert with the AC-12P wireless A.C. Remote Control, is sensing when a room is entered. This could be accomplished with pressure-switch door mats or door switches. When room entry is detected, the lights could be turned on or turned off on exit. For designing any sort of dedicated control system, the CA-21 is an ideal choice. It is possible to easily sense many types of input (pressure transducers, flow sensors, switches, etc.) while controlling outputs from a simple single LED display to a network of solid state relays controlling A.C. power. ## THE CA-22 BOARD-ANALOG I/O The CA-22 is a high speed analog I/O module. Although the CA-22 is classified as a HEAD END CARD, it differs from the rest of the family in that it may also be plugged directly into the computer's standard internal BUS. This allows for maximum flexibility in the use of the CA-22. The analog input section of the CA-22 consists of a 16 channel analog multiplexer. This means that up to 16 separate signals may be connected directly to the CA-22. Also included is a sample and hold circuit followed by the analog to digital converter circuitry. The A to D converter is capable of either 8 bit or 12 bit operation. These options are selectable under software control. The accuracy of the converter is plus or minus one in the least significant bit. The stability of the circuit is rated at one millivolt drift per degree Celsius. The A to D conversion is extremely fast. It is capable of digitizing up to 66,000 samples per second in the 8 bit conversion mode and 28,000 samples per second in the 12 bit mode. Shannon Sampling Theory states that signals should be sampled at twice the highest frequency present. Therefore, it is possible to convert signals with a frequency greater than 30K Hz. Clearly, high fidelity audio is well within the spectrum of the CA-22. The multiplexer has very high impedance inputs and is capable of accepting inputs in the range of $-1\emptyset$ volts through $+1\emptyset$ volts. The input is jumper selectable for other settings including a single sided range of $\emptyset$ through $+1\emptyset$ volts. Due to the indeterminable nature of the actual inputs that may actually be applied to the CA-22, only the multiplexer inputs are brought out. However, a quad op-amp is laid out in foil which may be populated in several different modes to handle some of the more "common" input configurations. The analog output section of the CA-22 consists of two identical high speed digital to analog converters. Each DAC can convert either 8 bits or 12 bits of data. Data input to the DACs is latched in such a manner that, when in the 8 bit conversion mode, the other four (of the total of twelve) bits are continuously output at a predefined value which may, of course, be defined under software control. The output of each DAC is buffered with a high speed op-amp capable of changing output voltage at the rate of $2\emptyset$ volts per microsecond. The standard configuration of each output is bi-polar with a voltage swing of $-1\emptyset$ volts through $+1\emptyset$ volts. This is jumper selectable to allow a uni-polar output of $\emptyset$ through $+1\emptyset$ volts. Some additional I/O capacity is provided on the CA-22. There are three TTL level inputs and six open collector logic outputs. These are strappable to be either standard TTL level outputs or high-voltage outputs. The CA-22 can be used for a multitude of analog sensing and/or analog controlling applications. Using the proper transducers and the 16 input channels, it is possible to monitor the temperature in several zones of a home or office. By extending this system with a CA-21, precise temperatures can be maintained by switching the proper controls on and off. Another interesting, if somewhat obvious application, is in audio processing. Reverberation, phase shifting and echoing are just a few of the uses implementable. If blocks of RAM were used for data storage, other experiments such as frequency doubling, etc., could be performed. If more sophisticated software techniques, such as fast Fourier transforms, are applied to store input data, very elaborate signal processing becomes realizable. Projects such as audio spectrum analyzers and speech recognition experiments are certainly practical. Note, in these types of applications, it is likely that some signal pre-processing in hardware is certainly beneficial—if not totally necessary. Employing both DAC outputs and the on-board unblanking circuit, X-Y oscilloscope plotting is an interesting application. By using these techniques and one or more of the analog inputs, a digital storage scope can be constructed. Note, both of these applications require access to an oscilloscope capable of X-Y input as well as blanking. ## THE CA-23 BOARD-EPROM PROGRAMMER The CA-23 is an EPROM programmer designed for use with the growing families of 5 volt only EPROMS. With the CA-23 you can program and verify all 1K through 8K byte EPROMs of this type. Note that these parts are often identified as 8K-64K bit EPROMS. The CA-23 can program (or verify) data in two basic modes—EPROM to/from EPROM or EPROM to/from computer RAM memory. Additionally, EPROM data may be read directly into the computer's RAM memory. There are four LED indicators on the CA-23. The first is "SOCKET UNSAFE." This means that a programming voltage is present at the socket and if an EPROM is removed or inserted it is likely to be damaged. The second indicator is "PROGRAMMING." This means that the EPROM is currently being programmed. The third indicator is "ERROR." This means that somewhere along the line a programming attempt was unsuccessful. The final indicator is "PROGRAM COMPLETE." This means that the program and verification were successful. The most intriguing application for this product is the creation of "custom" parts for the computer or peripherals. This could range from a new system monitor to a new high level language. It could even include a new character generator for the CRT or printer. Note, however, tinkering around with the internals of computers and peripherals requires a fairly high degree of technical expertise. Also, most manufacturer's warranties are voided by these types of modifications. Several OEM (original equipment manufacture) and Research/Development applications will be immediately obvious to those involved in that work. The CA-23, as previously mentioned, is designed for use with 1K through 8K byte EPROMS. These parts come in various package styles and have various product names. For example, Intel's $2K \times 8$ part is the 2716, Texas Instruments' part is known as the 2516. The CA-23 has both 24 pin and 28 pin zero insertion force sockets for reading, programming and verifying the EPROMS. ## THE CA-24 BOARD—PROTOTYPING The CA-24 is a solderless bread-board designed for prototyping, experimental and educational applications. The bread-boarding is made up of seven solderless plug-strips of the type manufactured by AP Products. Two of the plug-strips contain a connection matrix of 5 by 54 connections and are used as signal distribution points. Another pair of 96 location plug-strips are for powering the bread-board area. The actual experimenter area is comprised of three plug-strips, each with a 10 by 64 location connection matrix. Additionally, sixteen LED indicators and sixteen DIP switch positions are provided for signal observation and control functions. Board I/O is via TTL latches and bi-directional PIA ports as well as direct (buffered) data, signal and control lines from the computer BUS. This method allows you direct interconnection of devices such as 6850 ACIAs in addition to doing more "isolated" and/or independent circuits. The CA-24 also contains a "clock" generator which is continuously variable from approximately 25,000 Hz. through 70,000 Hz. It is also possible to connect the clock to an on-board 16 stage divider chain. This allows division of the fundamental frequency by as little as 21 (2) to as much as 216(65,536). The applications for the CA-24 are primarily prototyping and experimenting. Parts may be inserted and removed from the terminal strip blocks over and over. Interconnection of parts is accomplished simply through the use of solid, narrow gauge wire jumpers. Errors in design or connection are extremely easy to correct. The CA-24 lends itself very well to structured experiments that are common in the educational environment. It is an ideal tool to aid in the teaching of computer and computer interface fundamentals. ### THE CA-25 BOARD—ACCESSORY INTERFACE The CA-25 is designed to implement some of the functions normally associated with the CA-15 interface board. It allows direct connection of the Home Security System (AC-17P) and/or the Wireless A.C. Remote Control System (AC-12P) to C2 and C3 series computers. Additionally, those who own an older Ohio Scientific computer can now easily connect these systems to it. An extremely useful application of the CA-25 is associated with small business systems. Using the CA-25 with the Home Security System, and perhaps a CA-15V (Universal Telephone Interface with speech synthesizer output), the computer could do payroll, inventory, etc. by day and "guard" the shop by night. #### SUMMARY With the introduction of the 16 pin I/O BUS, Ohio Scientific has opened a new world of interfacing capabilities for both the large and the small computer user. Systems ranging from totally automated sampling and control stations to complete R/D setups to educational lab stations are now available via standard building blocks and standard computer systems. For pricing and availability, contact the nearest Ohio Scientific dealer. # **ADVANCED FEATURES** With the addition of the 630 I/O Expander, the C1P user can generate color graphics on a color monitor or standard color television set. The color monitor or color television is attached to the Challenger 1P in the manner described in section four. The color option is controlled by one bit of the control register at 55296 (address D800 in hexadecimal). For example POKE 55296,0 -disables color, defaults to black and white display POKE 55296,2 -enables color display. Appendix 5 gives a complete listing of the values to POKE at 55296 to obtain various combination of options such as DAC sound and color. Color display is handled in the same manner as the graphics display. The color displayed within a cell on the screen can be set with a POKE to an associated color memory location in the same way that the character displayed within a cell can be set with a POKE to the associated graphics memory location. Figure 17 is a color memory map for the Challenger 1P. The map is for the $24 \times 24$ display mode. As stated earlier in the manual the $12 \times 48$ display mode is intended for the display of text. Note that the color address of each cell is offset from the graphics address by 10/24. Each color memory location on the Challenger 1P is 4 bits in length. Other memory on the Challenger 1P is 8 bits in length. Thus each color memory location can store a number in the range 0/24. The values correspond to the following 16/24 different colors: Figure 17: CIP Color Memory Map DECIMAL VALUE COLOR Ø yellow 1 inverted yellow 2 red 3 inverted red - 4 green - 5 inverted green - 6 olive green - 7 inverted olive green - 8 blue - 9 inverted blue - 10 purple - 11 inverted purple - 12 sky blue - 13 inverted sky blue - 14 black - inverted black (no color). For instance, to clear the color memory, do the following 10 POKE 55296,9 2Ø INPUT "NEW COLOR(Ø-15)"; C 30 FOR J=54309 TO 55261 : POKE J,C : NEXT The character and the color displayed at a cell on the screen can be controlled with two POKEs. For example, the short program 1Ø POKE 53776,239 2Ø POKE 548ØØ,8 3Ø FOR T=1 TO 1ØØØ 40 NEXT T 50 END will place a small airplane in a blue square near the center of the screen. Statements 30-40 were included in the above program as a time delay loop. While the program is executing, the airplane will appear within the colored cell. Once the program is finished executing, the computer will scroll the screen and respond OK. When the screen is scrolled all graphics characters move up on the screen, but the colors remain fixed. On disk based versions of the Challenger 1P operating under OS-65D it is possible to selectively enable and disable scrolling with the following two POKEs: POKE 9800,0 -disable scrolling POKE 9800,32 -enable scrolling This capability can be extremely useful for "holding" a graphics display on the screen. There is no convenient way to disable scrolling when BASIC-in-ROM is used. An alternate approach, based upon the keyboard polling techniques of section twelve to hold the display in place, is illustrated by the following program 10 REM-ENABLE COLOR 20 POKE 55296,2 30 REM-DISPLAY CHARACTER 4Ø POKE 53776,239 50 REM-ASSIGN COLOR 60 POKE 54800,8 70 REM-WAIT UNTIL 8Ø REM-USER PRESSES 9Ø REM-CARRIAGE RETURN 100 REM-DISABLE CNTL-C 11Ø POKE 53Ø.1 120 REM-POLL R5 13Ø POKE 57Ø88,223 140 REM-CHECK FOR CR 15Ø K5=PEEK(57Ø88) 160 REM-CONTINUE UNTIL 17Ø REM-CR PRESSED 18Ø IF K5<>247 THEN 12Ø 190 REM-WHEN PRESSED 200 REM-RESTORE CNTL-C 21Ø POKE 53Ø,Ø 22Ø END This program displays the character and color in the cell and holds the display on the screen without scrolling until the <RETURN> key is depressed. The use of the built-in DAC to generate sound with the Challenger 1P was discussed in section ten. Although the DAC is capable of generating high quality sound, using the DAC requires sophisticated programming techniques. Moreover, the DAC demands the total attention of the computer when it is used. The 63Ø I/O Expander includes a programmable tone generator. This tone generator allows the C1P user to produce simple tones with a minimal amount of programming in BASIC. The signal from the programmable tone generator is available at the programmable sound output port of the rear panel of the C1P (see figure 1 in section three). The signal from this output port should be fed into the auxiliary input of an audio amplifier or the audio input jack of the video monitor if it has one. The programmable tone generator is controlled by bit 1 of a special control register located at memory address 63456 (address F7EØ in hexadecimal). For example, POKE 63456,Ø disables the programmable tone generator POKE 53456,2 enables the programmable tone generator Appendix 5 gives a complete listing of the values to POKE at 63456 to obtain various combinations of options such as simultaneous programmable sound output and AC control. The frequency of the tone generated by the programmable sound generator is determined by the value POKEd into memory location 63424 (address F7CØ in hexadecimal). If the programmable tone generator is enabled and the user enters the statement #### POKE 63424,N then the frequency of the sound generated is determined by the following formula: frequency = 49152/N cycles per second. The value of N should not be set to zero since this will result in division by zero. This equation can be solved to determine N as a function of the desired frequency N = 49152/frequency. In order to generate a tone of frequency 440 cycles per second, N should be 49152/440 = 111.7. This value should be rounded to the nearest integer value (112) before it is POKEd at location 63424 since the POKE statement can only be used to store integer values in the range 0-255 (decimal). There is continuous output from the programmable sound generator whenever it is enabled. The tone is constant, changing only when the value stored at 63424 is changed. The programmable tone generator provides an extremely easy means of generating sound with C1P. Although it does not have the capability of generating the wide variety of sounds possible with the DAC, the sound it produces are suitable for many applications such as sound effects in games. The following program utilizes the programmable tone generator to play a short tune. 10 REM-TWINKLE TWINKLE TUNE 20 REM-TURN ON SOUND GENERATOR 30 POKE 63424.1 : POKE 63456.2 40 REM-READ AND PLAY NOTES 50 FOR T=1 TO 7 60 READ FRQ, COUNT 70 N = INT (49152/FRQ) 80 POKE 63424.N 9Ø FOR A = 1 TO 25Ø\*COUNT 100 NEXT A 110 FOR D=1 TO 25 12Ø POKE 63424,1 130 NEXT D 140 NEXT T 15Ø DATA 261. 6,1,261. 6,1 16Ø DATA 392. Ø,1,392. Ø,1 17Ø DATA 44Ø. Ø,1,44Ø. Ø,1 18Ø DATA 392. Ø,2 19Ø POKE 63456, Ø 200 END # **APPENDIX 1** ## **COMPUTER GLOSSARY** ACIA (Asynchronous Communications Interface Adapter) An IC used for serial data transfer between a device such as a small computer and a serial terminal. A/D (Analog/Digital) Refers to changing an analog signal to a digital signal which the computer can use. BACKPLANE BOARD (Sometimes called Mother Board) Allows simple interconnection between small computer boards using the same bus. BASIC (Beginners All-Purpose Symbolic Instruction Code) A popular computer language ideally suited for use with Ohio Scientific computers. One of the simplest languages to learn, it can be used for a wide variety of applications. *BAUD* A measure of the speed with which information can be communicated between two devices, e.g., if the information is in the form of alphabetic characters, then 300 baud usually corresponds to about 30 characters per second. BIT (Binary InTeger) The smallest amount of information that can be known. (One or zero.) Eight bits equal one byte. BUS The means used to transfer information from one part of the computer to another. OSI uses a 48-pin BUS. BYTE A unit of information composed of 8 bits, which is treated by the computer as a single unit. A byte is usually used to represent an alphanumeric character or a number in the range of $\emptyset$ to 255. *CASSETTE* A medium for the electronic storage of data. Similar to magnetic tape. Most personal computers use ordinary audio-cassette tape recorders and tape. CENTRAL PROCESSING UNIT (CPU) The part of computer hardware responsible for interpreting data and executing instructions. COMPUTER An electronic device which is programmable and which processes, operates on and outputs information according to its stored program upon receipt of signals through an I/O device. COMPUTER LANGUAGE A language that is used for programming a computer, e.g., BASIC. DAC (Digital-to-Analog Converter) A device that changes digital signals into one continuous analog signal (voltage output). DATA The information, or set of signals, that is processed by a computer. DIGITAL Word used to describe information that can be represented by a collection of bits. Modern computers store information in digital form. DISK A circular piece of rigid material that resembles a record, which has a magnetic coating similar to that found on ordinary recording tape. Digital information can be stored magnetically on a disk. DISK DRIVE A peripheral which can store information on, and retrieve information from a disk. A "floppy disk drive" can store and retrieve information from a floppy disk. EPROM (Erasable Programmable Read Only Memory) Information stored in an EPROM IC (Integrated Circuit) can only be removed by special light sources or specific voltages (depending on the type of EPROM). Through the use of a special programming device, the user can store a set of information in the EPROM after it has been erased. FLOPPY DISK A thin, pliable 8" or 5-1/4" plastic square for storing data. 8" disks store 3, or more, times as much information as 5-1/4" floppies and access the information much faster. FOREGROUND/BACKGROUND Operation term used to describe the ability of a computer to function with normal programs at the same time it monitors external devices, e.g., home appliances, security, etc. HARD COPY Information printed on paper or any durable surface, as opposed to information temporarily presented on the CRT screen. HARDWARE The physical equipment that makes up the computer system. 1/O (Input/Output) Refers to bringing information into the machine in a form it recognizes and allowing the machine to transmit information. In other words, communicating with the outside world. INPUT Signals given to a computer for processing. INTERFACE The connection between two systems. A printer interface, for example, connects the printer to the computer. JOYSTICK Peripheral, accessory equipment that permits the user to move the figures on the monitor. For example, when you and another person play a joystick computer game, you operate joysticks to perform the functions of the game. K The initial "K" stands for "kilo," meaning 1,000. In computer language, K means 1,024 bytes of information that can be stored in a computer system. A computer with 16K memory, for example, means that the computer has 16 times 1,024, which is 16,384 bytes of memory. MEMORY The area in the computer for storage of data and instructions. MICROCOMPUTER A computer based on a microprocessor. MICROPROCESSOR The "brains" or CPU of a modern personal computer. All Ohio Scientific personal computers use the 6502 microprocessor, generally recognized as the fastest microprocessor available. MINI-FLOPPY DISK A small 5-1/4" floppy disk that stores about 1/4 the information of an 8" floppy disk. MODEM Word derived from MOdulator-DEModulator. A device that allows the computer to communicate over telephone lines and other communications media by changing digital information into audio tones (modulating) and from audio tones into digital information (demodulating). MONITOR A CRT or television screen. You can purchase an Ohio Scientific monitor to hook up to your computer or else simply use an ordinary TV set and attach it with an RF converter. OS Operating system. PC BOARD (Printed Circuit Board) A card with foils (electronically conductive pathways) connecting electronic components which are mounted on the board. PERIPHERAL Any device that can send information to and/or receive information from a computer, e.g., printer, modem, etc. PIA (Peripheral Interface Adapter) IC used for parallel data transfer. PRINTER A peripheral device which makes hard copy of letters and numerals. *PROGRAM* A set of instructions, arranged in a specific sequence, for directing the execution of a specific task, or the solution of a problem, by a computer. PROM (Programmable Read Only Memory) Memory which can have information stored on it once, but, is not normally changeable. RAM (Random Access Memory) A storage device and main memory of any computer, which can be read from and written into. Information and programs are stored in RAM, and they can be retrieved or changed by a program. ROM (Read Only Memory) A memory storage device in which the information is stored once, usually by the manufacturer, and cannot be changed. SOFTWARE Programs and operating systems used by the computer; may be on cassette or on disk and in ROM. # **APPENDIX 2** # BINARY AND HEXADECIMAL NUMBER SYSTEM THE 6502 ADDRESSING SYSTEM Numbers in the traditional decimal (base 10) number system are represented as strings of digits selected from the set of ten "decimal digits" The position of each digit within a decimal number is associated with a place value. Thus, the decimal number 2987 can be realized as 2\*10.00 + 9\*100 + 8\*10 + 7\*1. In the decimal number system, the place values (reading from the right to the left) are the consecutive powers of 10 (the base). $$1 = 10^{0}$$ (this is a mathematical convention) $10 = 10^{1} = 10$ $100 = 10^{2} = 10^{4}$ $1000 = 10^{3} = 10^{4}$ $10000 = 10^{4} = 10^{4}$ $100000 = 10^{4}$ $1000000 = 10^{4}$ Within a computer, data is more conveniently represented as strings of Ø's and 1's (the "binary digits"), i.e., as numbers in the binary (base 2) number system. In the binary number system place values are the consecutive powers of 2 (the base). Thus, in the binary number system, the place values (reading from the right to the left) are $$1_2 = 1_{10} = 2^0 = 1$$ $10/2 = 2_{10} = 2^1 = 2$ $10/2 = 4_{10} = 2^2 = 2^*2$ $10/2 = 8_{10} = 2^3 = 2^*2^*2$ $10/2 = 16_{10} = 2^4 = 2^*2^*2^*2$ and so forth. Conversion of a number from the binary number system to the decimal number system is straightforward. Just add up the place values corresponding to the locations of the digit 1 in the number. The binary number 110101 (binary) can be rewritten in decimal notation as 32 + 16 + 4 + 1 = 53 (decimal). The MCS65Ø2 microprocessor on the Challenger 1P is designed to process 8 bit (binary digit) data. Each memory location in the C1P is capable of storing 1 BYTE or 8 bits of data. Each BYTE of data can be interpreted as an 8 bit binary number in the range Ø-255 (decimal). It is easily checked that 11111111 (binary) = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 (decimal). In general significantly more binary digits than decimal digits are required to represent a number. The decimal number 1000000 requires 20 binary digits. To overcome this difficulty, the hexadecimal (base 16) number system is commonly used instead of the binary number system to describe the contents of memory within a computer. The hexadecimal number system expresses each number as a string of digits selected from a set of 16 "hexadecimal digits." Since the standard set of decimal digits only includes 10 symbols, the characters A, B, C, D, E and F are included to yield a set of 16 hexademical digits. These hexadecimal digits and their binary and decimal equivalents are listed below: | HEX<br>Ø | BINARY<br>ØØØØ | DECIMAL<br>Ø | |----------|----------------|--------------| | 1 | ØØØ1 | 1 | | 2 | ØØ1Ø | 2 | | 3 | ØØ11 | 3 | | 4 | Ø1ØØ | 4 | | 5 | Ø1Ø1 | 5 | | 6 | Ø11Ø | 6 | | 7 | Ø111 | 7 | | 8 | 1000 | 8 | | 9 | 1ØØ1 | 9 | | Α | 1Ø1Ø | 1Ø | | В | 1Ø11 | 11 | | С | 1100 | 12 | | D | 11Ø1 | 13 | | E | 111Ø | 14 | | F | 1111 | 15 | | | | | A single hexadecimal digit is capable of representing any four digit binary number. An 8 digit binary number (BYTE) can be easily converted to a 2 digit hexadecimal number simply by writing down the hexadecimal equivalent for the last of the first four bits of the 8 digit binary number. For example, The conversion of larger binary numbers to hexadecimal is handled in the same manner working from *right* to *left* converting each group of 4 binary digits to its hexadecimal equivalent. For example, $$\emptyset$$ 1 $\emptyset$ 1111 $\emptyset$ 1 $\emptyset$ 11 $\emptyset$ 0 $\emptyset$ 1 (binary) = \$5EB1 since $\emptyset$ 0 $\emptyset$ 1 (binary) = \$1 1 $\emptyset$ 11 (binary) = \$B 111 $\emptyset$ (binary) = \$E and $\emptyset$ 1 $\emptyset$ 1 (binary) = \$5. Conversely, a hexadecimal number can easily be converted to binary simply by replacing each hexadecimal digit by its binary equivalent. For example, $$$9E = 10011110 \text{ (binary)}$$ since $$E = 1110 \text{ (binary)}$ and $$9 = 1001 \text{ (binary)}.$ The memory addressing scheme on the Challenger 1P is based on the hexadecimal number system. The MCS65Ø2 microprocessor on the C1P addresses memory via a 4 digit hexadecimal address. Thus, the allowable addresses for memory on the Challenger 1P range from In the hexadecimal number system, the place values (reading from right to left) are the consecutive powers of 16 (the base). $$\$1 = 1_{1\emptyset} = 16^{\emptyset}$$ $$\$1\emptyset = 16_{1\emptyset} = 16^{1} = 16$$ $$\$1\emptyset\emptyset = 256_{1\emptyset} = 16^{2} = 16*16$$ $$\$1\emptyset\emptyset\emptyset = 4\emptyset96_{1\emptyset} = 16^{3} = 16*16*16$$ $$\$1\emptyset\emptyset\emptyset\emptyset = 65536_{1\emptyset} = 16*16*16*16* and so forth.$$ Based upon these place values, conversion from hexadecimal to decimal mode is relatively straightforward. For example, $$2A7B = 2^44096 + 10^2256 + 7^16 + 11^1 = 10875$$ (decimal). Note that we have used the fact that A = 10 (decimal) and B = 11 (decimal). The following Appendix Sections include: - A BASIC program which will perform hexadecimal to decimal and decimal to hexadecimal conversions for numbers in the range ∅−65535 (decimal). - 2. A look up table for quick hexadecimal-decimal conversions. - 3. Memory maps for the Challenger 1P in the standard BASIC-in-ROM configuration and for the two disk based configurations: PICO DOS and OS-65D. The memory maps describe the manner in which the memory is partitioned for different purposes within each configuration. Each of these memory maps show that BASIC-in-ROM is stored at memory locations \$A\$\textit{0}\textit{0}\textit{0}\$—\$BFFF or 4\textit{0}\textit{6}\textit{0}\$—49151 (decimal). The video display is assigned memory in the region labeled video RAM located at addresses \$D\$\textit{0}\textit{0}\textit{0}\$-\$D3FF or 53248-54271 (decimal). Compare the video memory maps on pages 44 and 45 in Section Nine. 5 REM THIS PROGRAM CONVERTS NUMBERS (DEC> HEX and HEX>DEC) 10 FORSC=1 TO 30: PRINT: NEXT 20 PRINT"1) CONVERT HEX TO DECIMAL": PRINT 30 PRINT"2) CONVERT DECIMAL TO HEX": PRINT 4Ø INPUT "WHAT IS YOUR CHOICE (1 OR 2)"; CHOICE 45 FORSC=1 TO 3Ø: PRINT: NEXT 5Ø IF CHOICE=1 THEN GOSUB 1ØØØ 60 IF CHOICE=2 THEN GOSUB 2000 7Ø GOSUB 3ØØØ 1000 REM HEX TO DECIMAL, CONVERT EACH CHAR. TO ASCII FIRST 1010 INPUT "YOUR HEX NUMBER IS"; A\$ 1020 L=LEN(A\$) : SUM=0 1060 FOR K=1TOL 1070 M=L+1-K 1080 T2=ASC(MID\$(A\$,M,1)) 1100 S1=SUM+16 (K-1)\*(T2-55) 111Ø S2=SUM+16 Å (K-1)\*(T2-48) : REM SHIFT N IS A Å 113Ø IF T2> 64 THEN SUM=S1 : REM CHECK IF HEX CHAR> 9 114Ø IF T2 <64 THEN SUM=S2 : REM OR <9 115Ø NEXT K 1160 PRINT "DECIMAL VALUE IS"; SUM 1170 PRINT: INPUT "DO YOU WANT TO CONVERT ANOTHER HEX NUMBER (Y/N)"; B\$ 118Ø PRINT: IFLEFT\$(B\$,1) = "Y" THEN 1ØØØ 119Ø GOTO 5 2000 REM DECIMAL INPUT WITH HEX OUTPUT 2010 INPUT"YOUR DECIMAL NUMBER IS"; D 2Ø3Ø T(Ø) = D 2Ø4Ø FORI=1 TO 8 2050 T(I) = INT(T(I-1)/16) : CI(I) = T(I-1) - T(I)\*16 : K=I 2Ø8Ø IF INT(T(I)) = Ø THEN GOTO 22ØØ 2090 NEXT I 2200 FOR I=1 TO K 221Ø REM REVERSE ORDER OF DIGITS FOR PRINTING 222Ø CH\$(K+1-I) = CHR\$(48+CI(I)) 223Ø IF CI(I)> 9 THEN CH\$(K+1-I)=CHR\$(55+CI(I)) 224Ø NEXT I 225Ø ZIP\$=" " 226Ø FORI=1 TO K: ZIP\$=ZIP\$+CH\$(I): NEXTI 2290 PRINT "THE HEX EQUIVALENT IS"; ZIP\$: PRINT 23ØØ INPUT "DO YOU WANT TO CONVERT ANOTHER DECIMAL NUMBER (Y/N)"; C\$ 231Ø PRINT: IFLEFT\$(C\$,1) = "Y" THEN 2ØØØ 233Ø GOTO 5 3000 PRINT "YOUR CHOICE SHOULD BE 1 OR 2" 3010 PRINT "PLEASE TRY AGAIN": GOTO 5 3Ø3Ø END # **APPENDIX 3** # **HEXADECIMAL-DECIMAL CONVERSION** | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F | |--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------| | 000<br>010<br>020<br>030<br>040<br>050<br>060<br>070<br>080<br>090<br>0A0<br>0B0<br>0C0<br>0D0<br>0F0 | 0<br>16<br>32<br>48<br>64<br>80<br>96<br>112<br>128<br>144<br>166<br>176<br>192<br>208<br>224<br>240 | 1<br>177<br>33<br>49<br>65<br>81<br>129<br>145<br>161<br>177<br>193<br>209<br>225<br>241 | 2<br>18<br>34<br>50<br>66<br>82<br>114<br>130<br>146<br>178<br>194<br>210<br>226<br>242 | 3<br>19<br>35<br>51<br>67<br>83<br>99<br>115<br>131<br>147<br>163<br>179<br>195<br>211<br>2243 | 4<br>20<br>36<br>52<br>68<br>84<br>100<br>116<br>132<br>148<br>164<br>180<br>196<br>212<br>228<br>244 | 5<br>21<br>37<br>53<br>69<br>85<br>101<br>117<br>133<br>149<br>165<br>181<br>197<br>213<br>229<br>245 | 6<br>22<br>38<br>54<br>70<br>86<br>102<br>118<br>134<br>156<br>182<br>198<br>214<br>230<br>246 | 7<br>23<br>39<br>55<br>71<br>87<br>103<br>135<br>151<br>167<br>183<br>199<br>215<br>231<br>247 | 8<br>24<br>40<br>56<br>72<br>88<br>104<br>136<br>152<br>168<br>200<br>216<br>232<br>248 | 9<br>25<br>41<br>57<br>73<br>89<br>105<br>121<br>137<br>153<br>169<br>201<br>217<br>233<br>249 | 10<br>26<br>42<br>58<br>74<br>90<br>106<br>122<br>138<br>170<br>186<br>202<br>218<br>234<br>250 | 11<br>27<br>43<br>59<br>75<br>91<br>107<br>123<br>139<br>155<br>171<br>187<br>203<br>219<br>235 | 12<br>28<br>44<br>60<br>76<br>92<br>108<br>124<br>140<br>156<br>172<br>188<br>204<br>220<br>236<br>252 | 13<br>29<br>45<br>61<br>77<br>93<br>109<br>125<br>141<br>173<br>189<br>205<br>221<br>237<br>253 | 14<br>30<br>46<br>62<br>78<br>94<br>110<br>126<br>158<br>174<br>190<br>206<br>222<br>238<br>254 | 15<br>31<br>47<br>63<br>79<br>95<br>111<br>127<br>143<br>175<br>191<br>207<br>223<br>239<br>255 | | 100<br>110<br>120<br>130<br>140<br>150<br>160<br>170<br>180<br>190<br>1A0<br>1B0<br>1C0<br>1D0<br>1F0 | 256<br>272<br>288<br>304<br>320<br>336<br>352<br>368<br>400<br>416<br>448<br>448<br>464<br>496 | 257<br>273<br>289<br>305<br>321<br>337<br>353<br>369<br>385<br>401<br>417<br>433<br>449<br>465<br>481<br>497 | 258<br>274<br>290<br>306<br>322<br>338<br>354<br>370<br>386<br>402<br>418<br>434<br>450<br>466<br>482<br>498 | 259<br>275<br>291<br>307<br>323<br>339<br>355<br>371<br>403<br>419<br>435<br>451<br>467<br>483<br>499 | 260<br>276<br>292<br>308<br>324<br>340<br>356<br>358<br>404<br>420<br>436<br>452<br>468<br>484<br>484 | 261<br>277<br>293<br>309<br>325<br>341<br>357<br>373<br>389<br>405<br>421<br>437<br>453<br>469<br>485<br>501 | 262<br>278<br>294<br>310<br>326<br>345<br>358<br>374<br>390<br>406<br>422<br>438<br>454<br>470<br>486<br>502 | 263<br>279<br>295<br>311<br>327<br>343<br>359<br>375<br>391<br>407<br>423<br>439<br>455<br>471<br>487<br>503 | 264<br>280<br>296<br>312<br>328<br>344<br>360<br>376<br>392<br>408<br>424<br>440<br>456<br>472<br>488<br>504 | 265<br>281<br>297<br>313<br>329<br>345<br>361<br>377<br>393<br>409<br>425<br>441<br>457<br>473<br>489<br>505 | 266<br>282<br>298<br>314<br>330<br>362<br>378<br>410<br>426<br>442<br>458<br>474<br>490<br>506 | 267<br>283<br>299<br>315<br>331<br>347<br>363<br>379<br>395<br>411<br>427<br>443<br>459<br>475<br>491<br>507 | 268<br>284<br>300<br>316<br>332<br>348<br>364<br>412<br>428<br>444<br>460<br>476<br>492<br>508 | 269<br>285<br>301<br>317<br>339<br>365<br>381<br>397<br>413<br>429<br>445<br>461<br>477<br>493<br>509 | 270<br>286<br>302<br>318<br>334<br>350<br>366<br>382<br>398<br>414<br>430<br>4462<br>478<br>494 | 271<br>287<br>303<br>319<br>335<br>351<br>367<br>383<br>399<br>415<br>431<br>447<br>463<br>479<br>495<br>511 | | 200<br>210<br>220<br>230<br>240<br>250<br>260<br>270<br>280<br>290<br>2A0<br>2B0<br>2C0<br>2D0<br>2E0<br>2F0 | 512<br>528<br>544<br>560<br>576<br>592<br>608<br>624<br>656<br>672<br>736<br>736<br>752 | 513<br>529<br>545<br>561<br>577<br>593<br>609<br>625<br>641<br>657<br>673<br>689<br>705<br>721<br>737<br>753 | 514<br>530<br>546<br>562<br>578<br>594<br>610<br>626<br>642<br>658<br>674<br>690<br>706<br>722<br>738<br>754 | 515<br>531<br>547<br>563<br>579<br>611<br>627<br>643<br>659<br>675<br>691<br>707<br>723<br>739<br>755 | 516<br>532<br>548<br>564<br>580<br>596<br>612<br>628<br>644<br>660<br>676<br>692<br>708<br>724<br>740<br>756 | 517<br>533<br>549<br>565<br>581<br>597<br>613<br>629<br>645<br>661<br>677<br>693<br>709<br>725<br>741<br>757 | 518<br>534<br>550<br>566<br>582<br>598<br>614<br>630<br>646<br>662<br>678<br>694<br>710<br>726<br>742<br>758 | 519<br>535<br>551<br>567<br>583<br>599<br>615<br>631<br>647<br>663<br>679<br>695<br>711<br>727<br>743<br>759 | 520<br>536<br>552<br>568<br>584<br>600<br>616<br>632<br>648<br>664<br>680<br>696<br>712<br>728<br>744<br>760 | 521<br>537<br>553<br>569<br>585<br>601<br>617<br>633<br>649<br>668<br>681<br>697<br>713<br>729<br>745<br>761 | 522<br>538<br>554<br>570<br>586<br>602<br>618<br>634<br>650<br>666<br>682<br>714<br>730<br>7462 | 523<br>539<br>555<br>571<br>587<br>603<br>619<br>635<br>651<br>667<br>683<br>699<br>715<br>731<br>747<br>763 | 524<br>540<br>556<br>572<br>588<br>604<br>620<br>636<br>652<br>668<br>700<br>716<br>732<br>748<br>764 | 525<br>541<br>557<br>573<br>589<br>605<br>621<br>637<br>653<br>669<br>685<br>701<br>717<br>733<br>749<br>765 | 526<br>542<br>558<br>574<br>590<br>606<br>622<br>638<br>654<br>670<br>686<br>702<br>718<br>734<br>750 | 527<br>543<br>559<br>575<br>591<br>607<br>623<br>639<br>655<br>671<br>687<br>703<br>719<br>735<br>751<br>767 | | 300<br>310<br>320<br>330<br>340<br>350<br>360<br>370<br>380<br>390<br>3A0<br>3B0<br>3C0<br>3D0<br>3E0<br>3F0 | 768<br>784<br>800<br>816<br>832<br>848<br>864<br>880<br>912<br>928<br>944<br>960<br>976<br>992<br>1008 | 769<br>785<br>801<br>817<br>833<br>849<br>865<br>881<br>897<br>913<br>929<br>945<br>961<br>977<br>993<br>1009 | 770<br>786<br>802<br>818<br>834<br>850<br>866<br>882<br>898<br>914<br>934<br>962<br>978<br>994<br>1010 | 771<br>787<br>803<br>819<br>835<br>851<br>867<br>883<br>899<br>915<br>931<br>947<br>963<br>979<br>995 | 772<br>788<br>804<br>820<br>836<br>852<br>868<br>884<br>900<br>916<br>932<br>948<br>964<br>980<br>996 | 773<br>789<br>805<br>821<br>837<br>853<br>869<br>885<br>901<br>917<br>933<br>949<br>965<br>981<br>997 | 774<br>790<br>806<br>822<br>838<br>854<br>870<br>886<br>902<br>918<br>934<br>950<br>966<br>982<br>998<br>1014 | 775<br>791<br>807<br>823<br>839<br>855<br>871<br>903<br>919<br>935<br>951<br>967<br>983<br>999<br>1015 | 776<br>792<br>808<br>824<br>840<br>856<br>872<br>888<br>904<br>920<br>936<br>952<br>968<br>984<br>1000<br>1016 | 777<br>793<br>809<br>825<br>841<br>857<br>873<br>889<br>905<br>921<br>937<br>953<br>969<br>985<br>1001<br>1017 | 778<br>794<br>810<br>826<br>842<br>858<br>874<br>890<br>906<br>922<br>938<br>954<br>970<br>986<br>1002<br>1018 | 779<br>795<br>811<br>827<br>843<br>859<br>875<br>891<br>907<br>923<br>939<br>955<br>971<br>987<br>1003<br>1019 | 780<br>796<br>812<br>828<br>844<br>860<br>876<br>892<br>908<br>924<br>940<br>956<br>972<br>988<br>1004<br>1020 | 781<br>797<br>813<br>829<br>845<br>861<br>877<br>893<br>909<br>925<br>941<br>957<br>973<br>989<br>1005<br>1021 | 782<br>798<br>814<br>830<br>846<br>862<br>878<br>894<br>910<br>926<br>942<br>958<br>974<br>990<br>1006<br>1022 | 783<br>799<br>815<br>831<br>847<br>863<br>879<br>895<br>911<br>927<br>943<br>959<br>975<br>975<br>1007 | ## **HEXADECIMAL-DECIMAL CONVERSION** | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F | |-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------| | 400<br>410<br>420<br>430<br>440<br>450<br>460<br>470<br>480<br>490<br>4A0<br>4B0<br>4C0<br>4E0<br>4F0 | 1024<br>1040<br>1056<br>1072<br>1088<br>1104<br>1120<br>1136<br>1156<br>1184<br>1200<br>1216<br>1232<br>1248<br>1264 | 1025<br>1041<br>1057<br>1073<br>1089<br>1105<br>1121<br>1137<br>1153<br>1169<br>1185<br>1201<br>1217<br>1233<br>1249<br>1265 | 1026<br>1042<br>1058<br>1074<br>1090<br>1106<br>1128<br>1138<br>1154<br>1170<br>1186<br>1202<br>1218<br>1234<br>1250 | 1027<br>1043<br>1059<br>1075<br>1091<br>11123<br>1139<br>1155<br>1171<br>1187<br>1203<br>1219<br>1235<br>1251<br>1267 | 1028<br>1044<br>1060<br>1076<br>1092<br>1108<br>1124<br>1140<br>1156<br>1172<br>1188<br>1204<br>1220<br>1236<br>1252<br>1268 | 1029<br>1045<br>1061<br>1077<br>1093<br>1109<br>1125<br>1141<br>1157<br>1173<br>1189<br>1205<br>1221<br>1237<br>1253<br>1269 | 1030<br>1046<br>1062<br>1078<br>1094<br>11126<br>1142<br>1154<br>1174<br>1190<br>1202<br>1238<br>1254<br>1270 | 1031<br>1047<br>1063<br>1079<br>1095<br>1111<br>1127<br>1143<br>1159<br>1175<br>1191<br>1203<br>1239<br>1255<br>1271 | 1032<br>1048<br>1064<br>1080<br>1096<br>1112<br>1128<br>1144<br>1160<br>1176<br>1192<br>1204<br>1240<br>1256<br>1272 | 1033<br>1049<br>1065<br>1081<br>1097<br>1113<br>1125<br>1145<br>1161<br>1177<br>1193<br>1209<br>1225<br>1241<br>1257 | 1034<br>1050<br>1066<br>1082<br>1098<br>1114<br>1136<br>1146<br>1162<br>1178<br>1194<br>1210<br>1226<br>1242<br>1258 | 1035<br>1051<br>1067<br>1083<br>1099<br>1115<br>1131<br>1147<br>1163<br>1179<br>1195<br>1211<br>1227<br>1243<br>1259<br>1275 | 1036<br>1052<br>1068<br>1100<br>1116<br>1138<br>1148<br>1164<br>1180<br>1192<br>1212<br>1228<br>1244<br>1260<br>1276 | 1037<br>1053<br>1069<br>1085<br>1101<br>1117<br>1137<br>1149<br>1165<br>1181<br>1193<br>1229<br>1245<br>1261<br>1277 | 1038<br>1054<br>1070<br>1086<br>1102<br>1118<br>1136<br>1150<br>1166<br>1182<br>1194<br>1214<br>1230<br>1246<br>1262 | 1039<br>1055<br>1071<br>1087<br>1103<br>1119<br>1135<br>1151<br>1167<br>1183<br>1199<br>1215<br>1231<br>1247<br>1263<br>1279 | | 500<br>510<br>520<br>530<br>540<br>550<br>560<br>570<br>580<br>590<br>580<br>590<br>5E0<br>5E0<br>5F0 | 1280<br>1296<br>1312<br>1328<br>1344<br>1360<br>1376<br>1408<br>1424<br>1456<br>1472<br>1488<br>1504<br>1520 | 1281<br>1297<br>1313<br>1329<br>1345<br>1361<br>1377<br>1393<br>1409<br>1425<br>1441<br>1457<br>1473<br>1489<br>1505<br>1521 | 1282<br>1298<br>1314<br>1330<br>1346<br>1362<br>1378<br>1410<br>1426<br>1445<br>1458<br>1474<br>1490<br>1506<br>1522 | 1283<br>1299<br>1315<br>1331<br>1347<br>1363<br>1379<br>1395<br>1411<br>1427<br>1443<br>1459<br>1475<br>1491<br>1507 | 1284<br>1300<br>1316<br>1332<br>1348<br>1364<br>1380<br>1412<br>1428<br>1444<br>1460<br>1476<br>1492<br>1508 | 1285<br>1301<br>1317<br>1333<br>1349<br>1365<br>1381<br>1397<br>1413<br>1429<br>1445<br>1461<br>1477<br>1493<br>1509<br>1525 | 1286<br>1302<br>1318<br>1334<br>1356<br>1382<br>1398<br>1414<br>1430<br>1446<br>1462<br>1478<br>1494<br>1510<br>1526 | 1287<br>1303<br>1319<br>1335<br>1351<br>1367<br>1383<br>1399<br>1415<br>1447<br>1447<br>1447<br>1479<br>1495<br>1511 | 1288<br>1304<br>1320<br>1336<br>1352<br>1368<br>1384<br>1400<br>1416<br>1432<br>1448<br>1460<br>1496<br>1512 | 1289<br>1305<br>1321<br>1337<br>1353<br>1369<br>1385<br>1401<br>1417<br>1433<br>1449<br>1465<br>1481<br>1497<br>1513 | 1290<br>1306<br>1322<br>1338<br>1354<br>1370<br>1386<br>1402<br>1418<br>1434<br>1450<br>1466<br>1482<br>1498<br>1514 | 1291<br>1307<br>1323<br>1339<br>1355<br>1371<br>1387<br>1403<br>1419<br>1435<br>1451<br>1461<br>1483<br>1499<br>1515 | 1292<br>1308<br>1324<br>1340<br>1356<br>1372<br>1388<br>1404<br>1420<br>1436<br>1452<br>1468<br>1484<br>1500<br>1516 | 1293<br>1309<br>1325<br>1341<br>1357<br>1373<br>1389<br>1405<br>1421<br>1437<br>1453<br>1465<br>1501<br>1517<br>1533 | 1294<br>1310<br>1326<br>1342<br>1358<br>1374<br>1390<br>1406<br>1422<br>1438<br>1454<br>1470<br>1486<br>1502<br>1518 | 1295<br>1311<br>1327<br>1343<br>1359<br>1375<br>1391<br>1407<br>1423<br>1439<br>1451<br>1471<br>1487<br>1503<br>1519 | | 600<br>610<br>620<br>630<br>640<br>650<br>660<br>670<br>680<br>690<br>6A0<br>6B0<br>6C0<br>6E0<br>6F0 | 1536<br>1552<br>1568<br>1584<br>1600<br>1616<br>1632<br>1648<br>1664<br>1696<br>1712<br>1728<br>1744<br>1760 | 1537<br>1559<br>1569<br>1585<br>1601<br>1617<br>1633<br>1649<br>1665<br>1681<br>1697<br>1713<br>1729<br>1745<br>1761 | 1538<br>1554<br>1570<br>1586<br>1602<br>1618<br>1630<br>1666<br>1682<br>1698<br>1714<br>1730<br>1746<br>1762<br>1778 | 1539<br>1555<br>1571<br>1587<br>1609<br>1635<br>1651<br>1667<br>1683<br>1699<br>1715<br>1731<br>1747<br>1763 | 1540<br>1556<br>1572<br>1588<br>1604<br>1620<br>1632<br>1668<br>1684<br>17700<br>1716<br>1732<br>1748 | 1541<br>1557<br>1573<br>1589<br>1605<br>1621<br>1637<br>1663<br>1669<br>1701<br>1717<br>1733<br>1749<br>1765<br>1781 | 1542<br>1558<br>1574<br>1590<br>1606<br>1622<br>1638<br>1654<br>1670<br>1686<br>1702<br>1718<br>1734<br>1750<br>1766<br>1782 | 1543<br>1559<br>1575<br>1591<br>1603<br>1639<br>1655<br>1671<br>1703<br>1719<br>1735<br>1751<br>1767 | 1544<br>1560<br>1576<br>1592<br>1608<br>1624<br>1640<br>1656<br>1672<br>1688<br>1704<br>1726<br>1736<br>1752<br>1768 | 1545<br>1561<br>1577<br>1593<br>16025<br>1641<br>1657<br>1673<br>1689<br>1705<br>1721<br>1737<br>1753<br>1769<br>1785 | 1546<br>1562<br>1578<br>1594<br>1610<br>1626<br>1642<br>1658<br>1674<br>1690<br>1706<br>1722<br>1738<br>1754<br>1776 | 1547<br>1563<br>1579<br>1595<br>1611<br>1627<br>1643<br>1659<br>1675<br>1691<br>1707<br>1729<br>1755<br>1771<br>1787 | 1548<br>1564<br>1580<br>1596<br>1612<br>1628<br>1644<br>1660<br>1676<br>1692<br>1708<br>1724<br>1740<br>1756<br>1772<br>1788 | 1549<br>1565<br>1581<br>1597<br>1613<br>1629<br>1645<br>1667<br>1693<br>1709<br>1725<br>1741<br>1757<br>1773<br>1789 | 1550<br>1566<br>1582<br>1598<br>1614<br>1630<br>1646<br>1662<br>1678<br>1694<br>1710<br>1726<br>1742<br>1758<br>1774<br>1790 | 1551<br>1567<br>1583<br>1599<br>1615<br>1631<br>1647<br>1663<br>1695<br>1711<br>1727<br>1743<br>1759<br>1775 | | 700<br>710<br>720<br>730<br>740<br>750<br>760<br>770<br>780<br>790<br>780<br>780<br>700<br>7E0<br>7F0 | 1792<br>1808<br>1824<br>1840<br>1856<br>1872<br>1888<br>1904<br>1936<br>1952<br>1968<br>1984<br>2000<br>2016<br>2032 | 1793<br>1809<br>1825<br>1841<br>1857<br>1873<br>1889<br>1905<br>1921<br>1937<br>1959<br>1969<br>1985<br>2001<br>2017<br>2033 | 1794<br>1810<br>1826<br>1858<br>1874<br>1890<br>1906<br>1922<br>1938<br>1954<br>1970<br>1986<br>2002<br>2018<br>2034 | 1795<br>1811<br>1827<br>1843<br>1859<br>1875<br>1891<br>1907<br>1923<br>1939<br>1955<br>1971<br>2003<br>2019<br>2035 | 1796<br>1812<br>1828<br>1844<br>1860<br>1876<br>1892<br>1908<br>1924<br>1940<br>1956<br>1972<br>1988<br>2004<br>2020<br>2036 | 1797<br>1813<br>1829<br>1845<br>1861<br>1877<br>1893<br>1909<br>1925<br>1941<br>1957<br>1973<br>1989<br>2005<br>2021<br>2037 | 1798<br>1814<br>1830<br>1846<br>1862<br>1878<br>1994<br>1910<br>1926<br>1958<br>1974<br>1990<br>2006<br>2022<br>2038 | 1799<br>1815<br>1831<br>1847<br>1863<br>1879<br>1991<br>1995<br>1975<br>1991<br>2007<br>2023<br>2039 | 1800<br>1816<br>1832<br>1848<br>1864<br>1896<br>1912<br>1924<br>1960<br>1976<br>1992<br>2008<br>2024<br>2040 | 1801<br>1817<br>1833<br>1849<br>1865<br>1881<br>1897<br>1913<br>1929<br>1945<br>1961<br>1977<br>1993<br>2009<br>2025<br>2041 | 1802<br>1818<br>1834<br>1850<br>1866<br>1882<br>1898<br>1914<br>1930<br>1946<br>1962<br>1978<br>1994<br>2010<br>2026<br>2042 | 1803<br>1819<br>1835<br>1851<br>1867<br>1883<br>1915<br>1931<br>1947<br>1963<br>1975<br>2011<br>2027<br>2043 | 1804<br>1820<br>1836<br>1852<br>1868<br>1884<br>1906<br>1916<br>1932<br>1948<br>1964<br>2012<br>2028<br>2044 | 1805<br>1821<br>1837<br>1853<br>1869<br>1885<br>1901<br>1917<br>1933<br>1949<br>1965<br>1981<br>1997<br>2013<br>2029<br>2045 | 1806<br>1822<br>1838<br>1854<br>1870<br>1886<br>1902<br>1918<br>1934<br>1950<br>1962<br>1998<br>2014<br>2030<br>2046 | 1807<br>1823<br>1839<br>1855<br>1871<br>1903<br>1919<br>1935<br>1951<br>1967<br>1987<br>1999<br>2015<br>2031<br>2047 | | 800<br>810<br>820<br>830<br>840<br>850<br>860<br>870<br>880<br>890<br>8A0<br>8B0<br>8C0<br>8E0<br>8F0 | 2048<br>2064<br>2080<br>2096<br>2112<br>2128<br>2144<br>2160<br>2176<br>2192<br>2208<br>2224<br>224<br>2240<br>2256<br>2272<br>2288 | 2049<br>2065<br>2081<br>2097<br>2113<br>2129<br>2145<br>2161<br>2177<br>2193<br>2209<br>2225<br>2241<br>2257<br>2273<br>2289 | 2050<br>2066<br>2082<br>2098<br>2114<br>2130<br>2146<br>2162<br>2178<br>2194<br>2210<br>2226<br>2258<br>2274<br>2290 | 2051<br>2067<br>2083<br>2099<br>2115<br>2131<br>2147<br>2163<br>2179<br>2195<br>2211<br>2227<br>2241<br>2259<br>2275<br>2291 | 2052<br>2068<br>2084<br>2100<br>2116<br>2132<br>2148<br>2164<br>2112<br>2228<br>2244<br>2260<br>2276<br>2292 | 2053<br>2069<br>2085<br>2101<br>2117<br>2133<br>2149<br>2165<br>2181<br>2299<br>2245<br>2261<br>2277<br>2293 | 2054<br>2070<br>2086<br>21102<br>2118<br>2134<br>2150<br>2166<br>2182<br>2194<br>2230<br>2246<br>2262<br>2278<br>2294 | 2055<br>2071<br>2087<br>2103<br>2119<br>2135<br>2151<br>2167<br>2183<br>2199<br>2215<br>2231<br>2247<br>2263<br>2279<br>2295 | 2056<br>2072<br>2088<br>2104<br>2120<br>2136<br>2152<br>2168<br>2216<br>2216<br>2232<br>2248<br>2280<br>2296 | 2057<br>2073<br>2089<br>2105<br>2121<br>2137<br>2153<br>2169<br>2217<br>2237<br>2233<br>2249<br>2265<br>2281<br>2297 | 2058<br>2074<br>2090<br>2106<br>21122<br>2138<br>2154<br>2176<br>2202<br>2218<br>2234<br>2250<br>2266<br>2282<br>2298 | 2059<br>2075<br>2091<br>2107<br>2123<br>2139<br>2155<br>2171<br>2187<br>2209<br>2235<br>2219<br>2235<br>2257<br>2283<br>2299 | 2060<br>2076<br>2092<br>2108<br>21124<br>2140<br>2156<br>2172<br>2188<br>2204<br>2220<br>2236<br>2252<br>2268<br>2284<br>2300 | 2061<br>2077<br>2093<br>2109<br>2125<br>2141<br>2157<br>2173<br>2205<br>2221<br>2237<br>2253<br>2269<br>2285<br>2301 | 2062<br>2078<br>2094<br>21110<br>2126<br>2142<br>2158<br>2174<br>2190<br>2206<br>2222<br>2238<br>2270<br>2286<br>2302 | 2063<br>2079<br>2095<br>2095<br>2111<br>2127<br>2143<br>2159<br>2175<br>2191<br>2203<br>2239<br>2255<br>2271<br>2287<br>2303 | ### **HEXADECIMAL-DECIMAL CONVERSION** | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F | |---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------| | 900<br>910<br>920<br>930<br>940<br>950<br>960<br>970<br>980<br>990<br>9A0<br>9B0<br>9C0<br>9D0<br>9F0 | 2304<br>2320<br>2336<br>2352<br>2368<br>2384<br>2400<br>2416<br>2432<br>2448<br>2464<br>2486<br>2512<br>2528<br>2544 | 2305<br>2321<br>2337<br>2353<br>2369<br>2385<br>2401<br>2417<br>2433<br>2449<br>2465<br>2481<br>2497<br>2513<br>2529<br>2545 | 2306<br>2322<br>2338<br>2354<br>2370<br>2386<br>2402<br>2418<br>2434<br>2450<br>2466<br>2482<br>2498<br>2514<br>2530<br>2546 | 2307<br>2323<br>2339<br>2355<br>2371<br>2387<br>2403<br>2419<br>2435<br>2451<br>2463<br>2499<br>2515<br>2531<br>2547 | 2308<br>2324<br>2346<br>2372<br>2388<br>2404<br>2420<br>2436<br>2452<br>2468<br>2452<br>2468<br>2500<br>2516<br>2532<br>2548 | 2309<br>2325<br>2341<br>2357<br>2373<br>2389<br>2405<br>2421<br>2437<br>2543<br>2465<br>2501<br>2517<br>2533<br>2549 | 2310<br>2326<br>2342<br>2354<br>2357<br>2390<br>2406<br>2422<br>2438<br>2454<br>2476<br>2502<br>2518<br>2534<br>2550 | 2311<br>2327<br>2343<br>2359<br>2375<br>2407<br>2423<br>2439<br>2455<br>2471<br>2487<br>2503<br>2519<br>2535<br>2551 | 2312<br>2328<br>2344<br>2360<br>2376<br>2392<br>2408<br>24240<br>2456<br>2478<br>2520<br>2536<br>2552 | 2313<br>2329<br>2345<br>2361<br>2377<br>2393<br>2409<br>24451<br>2457<br>2478<br>2489<br>2505<br>2521<br>2537<br>2553 | 2314<br>2330<br>2346<br>2362<br>2378<br>2394<br>2410<br>2426<br>2458<br>2474<br>2490<br>2506<br>2522<br>2538<br>2554 | 2315<br>2331<br>2347<br>2363<br>2379<br>2395<br>2411<br>2427<br>2459<br>2475<br>2491<br>2507<br>2523<br>2539<br>2555 | 2316<br>2332<br>2348<br>2364<br>2380<br>2396<br>2412<br>2428<br>2444<br>2460<br>2476<br>2508<br>2524<br>2524<br>2536 | 2317<br>2333<br>2349<br>2365<br>2381<br>2397<br>2413<br>2445<br>2461<br>2477<br>2493<br>2525<br>2541<br>2557 | 2318<br>2334<br>2350<br>2366<br>2382<br>2398<br>2414<br>2430<br>2462<br>2478<br>2478<br>2510<br>2526<br>2542<br>2558 | 2319<br>2335<br>2351<br>2367<br>2383<br>2399<br>2415<br>2431<br>2447<br>2463<br>2479<br>2495<br>2511<br>2527<br>2543<br>2559 | | A00<br>A10<br>A20<br>A30<br>A40<br>A50<br>A60<br>A70<br>A80<br>AA0<br>AB0<br>AC0<br>AD0<br>AF0 | 2560<br>2576<br>2592<br>2608<br>2624<br>2640<br>2656<br>2672<br>2688<br>2704<br>2736<br>2736<br>2752<br>2768<br>2788<br>2800 | 2561<br>2577<br>2593<br>2609<br>2625<br>2641<br>2657<br>2673<br>2689<br>2705<br>2721<br>2737<br>2753<br>2769<br>2785<br>2801 | 2562<br>2578<br>2594<br>2610<br>2626<br>2642<br>2658<br>2674<br>2690<br>2706<br>2702<br>2738<br>2754<br>2770<br>2786<br>2802 | 2563<br>2579<br>2595<br>2611<br>2627<br>2643<br>2659<br>2675<br>2691<br>2707<br>2723<br>2739<br>2755<br>2771<br>2803 | 2564<br>2580<br>2596<br>2612<br>2628<br>2644<br>2660<br>2676<br>2692<br>2704<br>2740<br>2756<br>2772<br>2788<br>2804 | 2565<br>2581<br>2597<br>2613<br>2629<br>2645<br>2661<br>2677<br>2693<br>2705<br>2725<br>2741<br>2757<br>2773<br>2789<br>2805 | 2566<br>2582<br>2598<br>2614<br>2630<br>2646<br>2662<br>2678<br>2694<br>2710<br>2726<br>2742<br>2758<br>2774<br>2790<br>2806 | 2567<br>2583<br>2599<br>2615<br>2631<br>2647<br>2663<br>2679<br>2695<br>2711<br>2727<br>2743<br>2759<br>2775<br>2775<br>2791<br>2807 | 2568<br>2584<br>2600<br>2616<br>2632<br>2648<br>2664<br>2680<br>2696<br>2712<br>2728<br>2744<br>2760<br>2776<br>2792<br>2808 | 2569<br>2585<br>2601<br>2617<br>2633<br>2649<br>2665<br>2681<br>2697<br>2713<br>2729<br>2745<br>2761<br>2777<br>2793<br>2809 | 2570<br>2586<br>2602<br>2618<br>2634<br>2656<br>2666<br>2682<br>2730<br>2746<br>2762<br>2778<br>2794<br>2810 | 2571<br>2587<br>2603<br>2619<br>2635<br>2651<br>2667<br>2683<br>2699<br>2715<br>2731<br>2747<br>2763<br>2779<br>2795<br>2811 | 2572<br>2588<br>2604<br>2620<br>2636<br>2652<br>2668<br>2684<br>2700<br>2716<br>2732<br>2748<br>2764<br>2780<br>2796<br>2812 | 2573<br>2589<br>2605<br>2621<br>2637<br>2653<br>2669<br>2685<br>2701<br>2717<br>2733<br>2749<br>2765<br>2781<br>2797<br>2813 | 2574<br>2590<br>2606<br>2622<br>2638<br>2657<br>2670<br>2686<br>2702<br>2718<br>2734<br>2750<br>2766<br>2782<br>2798<br>2814 | 2575<br>2591<br>2607<br>2623<br>2639<br>2655<br>2671<br>2703<br>2719<br>2735<br>2767<br>2783<br>2783<br>2789<br>2815 | | B00<br>B10<br>B20<br>B30<br>B40<br>B50<br>B60<br>B70<br>B80<br>BA0<br>BB0<br>BC0<br>BD0<br>BC0<br>BD0 | 2816<br>2832<br>2848<br>2864<br>2890<br>29912<br>2928<br>2944<br>2960<br>2976<br>3008<br>3024<br>3040<br>3056 | 2817<br>2833<br>2849<br>2865<br>2881<br>29913<br>2929<br>2945<br>2961<br>2977<br>2993<br>3009<br>3025<br>3041<br>3057 | 2818<br>2834<br>2850<br>2866<br>2882<br>2898<br>2914<br>2930<br>2946<br>2962<br>2978<br>2994<br>3010<br>3026<br>3042<br>3058 | 2819<br>2835<br>2851<br>2867<br>2889<br>2915<br>2947<br>2963<br>2975<br>3011<br>3027<br>3043<br>3059 | 2820<br>2836<br>2852<br>2868<br>2884<br>2900<br>2916<br>2932<br>2948<br>2960<br>2996<br>3012<br>3028<br>3028<br>3044<br>3060 | 2821<br>2837<br>2853<br>2869<br>2865<br>2901<br>2917<br>2933<br>2949<br>2965<br>2981<br>2997<br>3013<br>3029<br>3045<br>3061 | 2822<br>2838<br>2854<br>2870<br>2886<br>29018<br>2934<br>2950<br>2962<br>2982<br>2998<br>3014<br>3030<br>3046<br>3062 | 2823<br>2839<br>2855<br>2871<br>2887<br>2903<br>2919<br>2935<br>2951<br>2967<br>2987<br>2999<br>3015<br>3031<br>3047<br>3063 | 2824<br>2840<br>2856<br>2872<br>2888<br>2904<br>2920<br>2936<br>2952<br>2968<br>3000<br>3016<br>3032<br>3048<br>3064 | 2825<br>2841<br>2857<br>2873<br>2889<br>2905<br>2921<br>2937<br>2953<br>2965<br>3001<br>3017<br>3037<br>3049<br>3065 | 2826<br>2842<br>2858<br>2874<br>2890<br>2906<br>2922<br>2938<br>2954<br>2976<br>3002<br>3018<br>3036<br>3050<br>3066 | 2827<br>2843<br>2859<br>2875<br>2891<br>2907<br>2923<br>2939<br>2955<br>2971<br>3003<br>3019<br>3035<br>3051<br>3067 | 2828<br>2844<br>2860<br>2876<br>2892<br>2904<br>2956<br>2976<br>2978<br>3004<br>3020<br>3036<br>3052<br>3068 | 2829<br>2845<br>2861<br>2877<br>2893<br>29025<br>2941<br>2957<br>297<br>2989<br>3005<br>3021<br>3037<br>3053<br>3069 | 2830<br>2846<br>2862<br>2878<br>2894<br>2916<br>2926<br>2942<br>2958<br>2970<br>3006<br>3022<br>3038<br>3054<br>3070 | 2831<br>2847<br>2863<br>2879<br>2895<br>2911<br>2927<br>2943<br>2959<br>2976<br>2997<br>3007<br>3003<br>3039<br>3055<br>3071 | | C00<br>C10<br>C20<br>C30<br>C40<br>C50<br>C60<br>C70<br>C80<br>C90<br>CA0<br>CB0<br>CC0<br>CC0<br>CC0<br>CC0<br>CC0 | 3072<br>3088<br>3104<br>3120<br>3136<br>3152<br>3168<br>3232<br>3248<br>3296<br>3232<br>3248<br>3280<br>3296<br>3312 | 3073<br>3089<br>3105<br>3121<br>3137<br>3153<br>3169<br>3201<br>3217<br>3233<br>3249<br>3265<br>3281<br>3297<br>3313 | 3074<br>3090<br>3106<br>3122<br>3138<br>3154<br>3170<br>3186<br>3202<br>3218<br>3234<br>3250<br>3266<br>3282<br>3298<br>3314 | 3075<br>3091<br>3107<br>3123<br>3139<br>3155<br>3171<br>3187<br>3203<br>3219<br>3235<br>3251<br>3267<br>3283<br>3299<br>3315 | 3076<br>3092<br>3108<br>3124<br>3140<br>3156<br>3172<br>3188<br>3204<br>3236<br>3236<br>3252<br>3268<br>3284<br>3300<br>3316 | 3077<br>3093<br>3109<br>3125<br>3141<br>3157<br>3173<br>3189<br>3205<br>3221<br>3237<br>3253<br>3269<br>3285<br>3301<br>3317 | 3078<br>3094<br>3110<br>3126<br>3142<br>3158<br>3174<br>3190<br>3206<br>3228<br>3238<br>3254<br>3270<br>3286<br>3302<br>3318 | 3079<br>3095<br>3111<br>3127<br>3143<br>3159<br>3175<br>3191<br>3223<br>3239<br>3255<br>3271<br>3287<br>3303<br>3319 | 3080<br>3096<br>3112<br>3128<br>3128<br>3144<br>3160<br>3176<br>3298<br>3224<br>3240<br>3256<br>3272<br>3288<br>3304<br>3320 | 3081<br>3097<br>3113<br>3129<br>3145<br>3167<br>3193<br>3209<br>3225<br>3241<br>3257<br>3273<br>3283<br>3305<br>3321 | 3082<br>3098<br>3114<br>3130<br>3146<br>3162<br>3178<br>3290<br>3226<br>3226<br>3274<br>3290<br>3306<br>3322 | 3083<br>3099<br>3115<br>3131<br>3147<br>3163<br>3195<br>3291<br>3223<br>3259<br>3275<br>3291<br>3307<br>3323 | 3084<br>3100<br>3116<br>3132<br>3148<br>3164<br>3196<br>3212<br>3228<br>3228<br>3246<br>3276<br>3276<br>3292<br>3308<br>3324 | 3085<br>3101<br>3117<br>3133<br>3149<br>3165<br>3181<br>3297<br>3213<br>3225<br>3261<br>3277<br>3293<br>3309<br>3325 | 3086<br>3102<br>3118<br>3134<br>3150<br>3166<br>3182<br>3198<br>3214<br>3230<br>3262<br>3278<br>3294<br>3310<br>3326 | 3087<br>3103<br>3119<br>3135<br>3151<br>3167<br>3183<br>3199<br>3215<br>3221<br>3247<br>3263<br>3279<br>3295<br>3311<br>3327 | | D00 D10 D20 D30 D40 D50 D60 D70 D80 D90 DA0 DB0 DC0 DC0 DE0 DF0 | 3328<br>3346<br>3376<br>3376<br>3392<br>3408<br>3424<br>3440<br>3456<br>3472<br>3488<br>3504<br>3536<br>3536<br>3552<br>3568 | 3329<br>3345<br>3361<br>3377<br>3393<br>3409<br>3425<br>3447<br>3473<br>3489<br>3505<br>3521<br>3537<br>3553<br>3569 | 3330<br>3346<br>3362<br>3378<br>3410<br>3426<br>3458<br>3474<br>3490<br>3506<br>3522<br>3538<br>3554<br>3570 | 3331<br>3347<br>3363<br>3379<br>3395<br>3411<br>3427<br>3443<br>3459<br>3475<br>3507<br>3523<br>3539<br>3555<br>3571 | 3332<br>3348<br>3364<br>3380<br>3396<br>3412<br>3428<br>3446<br>3476<br>3492<br>3508<br>3524<br>3524<br>3524<br>3556<br>3572 | 3333<br>3349<br>3365<br>3381<br>3397<br>3413<br>3429<br>3445<br>3461<br>3477<br>3493<br>3509<br>3525<br>3525<br>3541<br>3557<br>3753 | 3334<br>3356<br>3366<br>3382<br>3398<br>3414<br>3430<br>3446<br>3478<br>3494<br>3510<br>3526<br>3542<br>3558<br>3574 | 3335<br>3351<br>3367<br>3383<br>3399<br>3415<br>3447<br>3463<br>3495<br>3511<br>3527<br>3543<br>3559<br>3575 | 3336<br>3352<br>3368<br>3384<br>3400<br>3416<br>3432<br>3448<br>3496<br>3512<br>3528<br>3524<br>3560<br>3576 | 3337<br>3353<br>3369<br>3385<br>3401<br>3417<br>3433<br>3449<br>3465<br>3481<br>3497<br>3513<br>3529<br>3545<br>3561<br>3577 | 3338<br>3354<br>3374<br>3386<br>3486<br>3492<br>3418<br>3434<br>3450<br>3498<br>3514<br>3530<br>3546<br>3578 | 3339<br>3355<br>3371<br>3403<br>3415<br>3435<br>3451<br>3467<br>3483<br>3499<br>3515<br>3531<br>3563<br>3579 | 3340<br>3356<br>3372<br>3388<br>3404<br>3420<br>3436<br>3452<br>3468<br>3484<br>3500<br>3516<br>3536<br>3548<br>3564<br>3580 | 3341<br>3357<br>3373<br>3389<br>3405<br>3421<br>3437<br>3453<br>3469<br>3485<br>3501<br>3517<br>3533<br>3549<br>3565<br>3581 | 3342<br>3358<br>3374<br>3390<br>3406<br>3422<br>3438<br>3454<br>3470<br>3486<br>3502<br>3518<br>3550<br>3566<br>3582 | 3343<br>3359<br>3375<br>3391<br>3407<br>3429<br>3439<br>3455<br>3471<br>3487<br>3503<br>3519<br>3535<br>3551<br>3567<br>3583 | #### **HEXADECIMAL-DECIMAL CONVERSION** | | 0 | 1 | 2 | 3 | | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F | | |------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--| | E00<br>E10<br>E20<br>E30<br>E40<br>E50<br>E60<br>E70<br>E80<br>E90<br>EB0<br>ED0<br>EE0<br>EF0 | 3584<br>3600<br>3616<br>3632<br>3648<br>3680<br>3696<br>3712<br>3728<br>3744<br>3760<br>3776<br>3792<br>3808<br>3824 | 3585<br>3601<br>3613<br>3633<br>3649<br>3665<br>3681<br>3713<br>3729<br>3745<br>3761<br>3777<br>3793<br>3809<br>3825 | 3586<br>3602<br>3618<br>3634<br>3650<br>3666<br>3682<br>3714<br>3730<br>3746<br>3778<br>3794<br>3810<br>3826 | 3587<br>3603<br>3619<br>3635<br>3651<br>3683<br>3699<br>3715<br>3747<br>3763<br>3779<br>3795<br>3811<br>3827 | 355<br>366<br>366<br>366<br>367<br>377<br>377<br>377<br>377<br>377<br>378<br>383 | 4 3605<br>0 3621<br>2 3653<br>8 3669<br>4 3685<br>0 3701<br>2 3733<br>8 3749<br>4 3765<br>0 3781<br>6 3797<br>2 3813 | 3750<br>3766<br>3782<br>3798<br>3814 | 3591<br>3607<br>3623<br>3639<br>3655<br>3671<br>3703<br>3719<br>3735<br>3751<br>3767<br>3783<br>3799<br>3815<br>3831 | 3592<br>3608<br>3624<br>3640<br>3656<br>3672<br>3688<br>3704<br>3736<br>3752<br>3768<br>3800<br>3816<br>3832 | 3593<br>3609<br>36241<br>3657<br>3673<br>3705<br>3705<br>3721<br>3737<br>3753<br>3769<br>3785<br>3801<br>3811<br>3833 | 3594<br>3610<br>3658<br>3642<br>3658<br>3674<br>3690<br>3706<br>3722<br>3738<br>3754<br>3818<br>3818<br>3834 | 3595<br>3611<br>3659<br>3675<br>3691<br>3707<br>3723<br>3739<br>3755<br>3771<br>3787<br>3803<br>3819<br>3835 | 3596<br>3612<br>3628<br>3644<br>3660<br>3676<br>3692<br>3708<br>3724<br>3740<br>3752<br>3788<br>3804<br>3820<br>3836 | 3597<br>3613<br>3629<br>3645<br>3661<br>3677<br>3693<br>3725<br>3741<br>3757<br>3773<br>3789<br>3805<br>3821<br>3837 | 3598<br>3614<br>3636<br>3646<br>3662<br>3678<br>3710<br>3726<br>3742<br>3758<br>3774<br>3790<br>3806<br>3822<br>3838 | 3599<br>3615<br>3631<br>3647<br>3669<br>3679<br>3695<br>3711<br>3743<br>3759<br>3775<br>3791<br>3807<br>3823<br>3839 | | | F00<br>F10<br>F30<br>F40<br>F50<br>F60<br>F70<br>F80<br>F90<br>FA0<br>FB0<br>FD0<br>FE0 | 3840<br>3856<br>38752<br>3888<br>3904<br>3936<br>3952<br>3968<br>3968<br>4000<br>4016<br>4032<br>4048<br>4064<br>4080 | 3841<br>3857<br>3873<br>3889<br>3905<br>3921<br>3937<br>3969<br>3985<br>4001<br>4017<br>4033<br>4049<br>4065<br>4081 | 3842<br>3858<br>3874<br>3890<br>3906<br>3922<br>3938<br>3954<br>3970<br>3986<br>4002<br>4018<br>4034<br>4050<br>4062 | 3843<br>3859<br>3875<br>3891<br>3907<br>3907<br>3939<br>3955<br>3971<br>4003<br>4019<br>4035<br>4051<br>4061<br>4083 | 38<br>38<br>38<br>39<br>39<br>39<br>39<br>40<br>40<br>40<br>40<br>40 | 60 386<br>66 387<br>92 3893<br>98 390<br>94 392<br>90 394<br>66 395<br>72 397<br>88 398<br>94 400<br>96 402<br>96 403<br>88 406<br>88 406 | 3862<br>3878<br>3894<br>3910<br>3926<br>3942<br>3958<br>3974<br>3974<br>4006<br>4022<br>4038<br>4054<br>4054 | 3847<br>3863<br>3879<br>3895<br>3911<br>3927<br>3943<br>3959<br>3975<br>3991<br>4023<br>4039<br>4075<br>4071<br>4087 | 3848<br>3864<br>3890<br>3896<br>3912<br>3928<br>3940<br>3976<br>3992<br>4008<br>4024<br>4040<br>4056<br>4072<br>4088 | 3849<br>3865<br>3881<br>3897<br>3913<br>3929<br>3945<br>3961<br>3977<br>3993<br>4009<br>4025<br>4041<br>4057<br>4073<br>4089 | 3850<br>3866<br>3882<br>3898<br>3914<br>3930<br>3946<br>3962<br>3978<br>3994<br>4010<br>4026<br>4042<br>4058<br>4074<br>4090 | 3851<br>3867<br>3883<br>3899<br>3915<br>3931<br>3947<br>3963<br>3979<br>3995<br>4011<br>4027<br>4043<br>4059<br>7075<br>4091 | 3852<br>3868<br>3884<br>3900<br>3916<br>3932<br>3948<br>3964<br>4012<br>4028<br>4044<br>4060<br>4076<br>4092 | 3853<br>3869<br>3885<br>3901<br>3917<br>3933<br>3949<br>3965<br>3981<br>3997<br>4013<br>4029<br>4045<br>4061<br>4077<br>4093 | 3854<br>3870<br>3886<br>3902<br>3918<br>3950<br>3966<br>3982<br>3998<br>4014<br>4030<br>4046<br>4062<br>4078<br>4094 | 3855<br>3871<br>3887<br>3903<br>3919<br>3935<br>3951<br>3967<br>3983<br>3999<br>4015<br>4031<br>4047<br>4067<br>4079<br>4095 | | #### **HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE** | HEXADECIMAL | DECIMAL | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 01000 02000 03000 04000 05000 06000 07000 08000 09000 0A000 0B000 0C000 0E000 0E000 0F000 11000 12000 13000 14000 15000 16000 17000 18000 19000 1A000 1B000 1C000 1D000 1C000 1D000 | 4096<br>8192<br>12288<br>16384<br>20480<br>24576<br>28672<br>32768<br>36864<br>40960<br>45056<br>49152<br>53248<br>57344<br>61440<br>65536<br>69632<br>73728<br>77824<br>86016<br>90112<br>94208<br>98304<br>102400<br>106496<br>110592<br>114688<br>118784<br>122880<br>126976 | ### **MEMORY MAPS** #### CHALLENGER 1P MEMORY MAP (BASIC-IN-ROM CONFIGURATION) 0000-00FF Page Zero Ø1ØØ-Ø1FF Stack \*Ø13Ø **NMI** Vector \*Ø1CØ IRQ Vector Ø2ØØ-Ø221 \*Ø2Ø3 **BASIC Flags and Vectors** \*Ø2Ø5 LOAD Flag SAVE Flag \*Ø218 Input Vector \*Ø21A Output Vector \*Ø21C Control C Check Vector \*Ø21E LOAD Vector \*0220 SAVE Vector Ø222-Ø2FA Unused 0300 end of RAM **BASIC** Workspace A000-BFFF BASIC-in-ROM DØØØ-D3FF Video RAM DFØØ Polled Keyboard FØØØ-FØØ1 ACIA Serial Cassette Port F8ØØ-FBFF **ROM** FC00-FCFF ROM-Floppy Bootstrap FDØØ-FDFF ROM-Polled Keyboard Input Routine FEØØ-FEFF ROM-65V Monitor FFØØ-FFFF ROM-BASIC Support \*FFFA NMI Vector \*FFFC Reset Vector IRQ Vector \*FFFE #### **CHALLENGER 1P MEMORY MAP UNDER P-DOS** 0000-00FF Page Zero Ø1ØØ-Ø1FF Stack \*Ø13Ø NMI Vector \*Ø1CØ IRQ Vector | Ø2ØØ Ø221 | BASIC Flags and Vectors | | |--------------------|----------------------------------------------|-----------------------| | *Ø2Ø3 | LOAD Flag | | | *Ø2Ø5 | SAVE Flag | | | *Ø218 | Input Vector | | | *Ø21A | Output Vector | | | *Ø21C | Control C Check Vector | | | *Ø21E | LOAD Vector | | | *Ø22Ø | SAVE Vector | | | 0222-02FA | Unused | | | Ø2FB-2ØFF | P-DOS Workspace Pointers | | | -22FA | BASIC Workspace Under P-DOS (8K) | | | 23ØØ—317D | P-DOS | | | 317E-3FFF | Free | | | | End of 16K | | | 4000-7FFF | Free | | | | End of 32K | | | AØØØ—BFFF | BASIC-in-ROM | | | CØØØ—CØØ3 | Floppy PIA | | | CØ1Ø—CØ11 | Floppy ACIA | | | DØØØ-D3FF | Video RAM | | | DFØØ | Polled Keyboard | | | FØØØ—FØØ1 | ACIA Serial Cassette Port | | | F8ØØ—FBFF | ROM | | | FCØØ-FCFF | ROM-Floppy Bootstrap | | | FDØØ-FEFF | ROM-65V Monitor | | | FFØØ—FFFF | ROM-BASIC Support | | | *FFFA | NMI Vector | | | *FFFC | Reset Vector | | | *FFFE | IRQ Vector | | | CHALL | ENGER 1P MEMORY MAP UNDER 65DV3 | | | 0000-00FF | Page Zero | | | Ø1ØØ <b>-</b> Ø1FF | Stack | | | *Ø13Ø | NMI Vector | | | *Ø1CØ | IRQ Vector | | | Ø2ØØ <b>—</b> Ø221 | BASIC Flags and Vectors | | | Ø2ØØ-22FA | Transient Processor Area Under 65DV3 for 9 D | igit BASIC Assembler/ | Editor 65DV3 Drivers 23ØØ-317D 317E-3FFF Free End of 16K 65DV3 4000-7FFF Free Object Code Workspace End of 32K AØØØ-BFFF BASIC-in-ROM CØØØ-CØØ3 Floppy PIA CØ1Ø-CØ11 Floppy ACIA DØØØ-D3FF Video RAM DFØØ Polled Keyboard FØØØ-FØØ1 ACIA Serial Cassette Port F8ØØ-FBFF **ROM** FCØØ-FCFF ROM-Floppy Bootstrap FDØØ-FDFF ROM-Polled Keyboard Input Routine FEØØ-FEFF ROM-65V Monitor FFØØ-FFFF ROM-BASIC Support \*FFFA NMI Vector \*FFFA NMI Vector \*FFFC Reset Vector \*FFFE IRQ Vector ### **CONTROL REGISTERS** Memory location 55296 (address D800 in hexadecimal) is reserved as a control register. This location is "write only," that is the user can POKE values into this location but cannot PEEK to determine the last value stored. This register is used to control the output from the DAC, the display mode on the screen and to enable color (on units equipped with the 630 I/O Expander). The following table lists the allowable POKEs at location 55296 and their effects: | VALUE | SCREEN | COLOR | DAC SOUND | |-------|---------|----------|-----------| | Ø | 24 × 24 | DISABLED | DISABLED | | 1 | 12 × 48 | DISABLED | DISABLED | | 2 | 24 × 24 | ENABLED | DISABLED | | 3 | 12 × 48 | ENABLED | DISABLED | | 16 | 24 × 24 | DISABLED | ENABLED | | 17 | 12 × 48 | DISABLED | ENABLED | | 18 | 24 × 24 | ENABLED | ENABLED | | 19 | 12 × 48 | ENABLED | ENABLED | When the SWAP program is loaded from cassette in BASIC-in-ROM to allow the use of the $12 \times 48$ display mode, the above POKEs should be made to memory location 251 instead of 55296. For models of the C1P equipped with the 630 I/O Expander, memory location 63456 (address F7E0 in hexadecimal) is reserved as a control register. The value stored at this location controls the AC control interface, the programmable divider and selects between the printer and modem port. The following table lists the allowable POKEs at location 63456 and their effects: | VALUE | AC CONTROL | TONE GENERATOR | PRINTER/MODEM | |-------|------------|----------------|---------------| | Ø | DISABLED | DISABLED | PRINTER | | 1 | ENABLED | DISABLED | PRINTER | | 2 | DISABLED | ENABLED | PRINTER | | 3 | ENABLED | ENABLED | PRINTER | | 4 | DISABLED | DISABLED | MODEM | | 5 | ENABLED | DISABLED | MODEM | | 6 | DISABLED | ENABLED | MODEM | | 7 | ENABLED | ENABLED | MODEM | ### **OS-65D USER'S GUIDE** This section is intended to be used as a quick reference guide only for complete details on OS-65D please refer to the OS-65D User's Manual. ### COMMANDS ASM Load the assembler and extended monitor. Transfer control to the assem- bler. (Not present on all disks) BASIC Load BASIC and transfer control to it. CALL NNNN=TT,S Load contents of track, "TT" sector, "S" to memory location "NNNN". DIR NN Print sector map directory of track "NN". EM Load the assembler and extended monitor. Transfer control to the ex- tended monitor. (Not present on all disks) EXAM NNNN=TT Examine track. Load entire track contents, including formatting informa- tion, into location "NNNN". GO NNNN Transfer Control <GO> to location "NNNN". HOME Reset track count to zero and home the current drive's head to track zero. INIT Initialize the entire disk, i.e., erase the entire diskette (except track Ø) and write new formatting information on each track. INIT TT Same as "INIT", but only operates on track "TT". IO NN,MM Changes the input I/O distributor flag to "NN", and the output flag to "MM". IO ,MM Changes only the output flag. IO NN Changes only the input flag. LOAD FILNAM" into memory. LOAD TT Loads source file into memory given starting track number "TT". MEM NNNN,MMMM Sets the memory I/O device input pointer to "NNNN", and the output pointer to "MMMM". PUT FILNAM Saves source file in memory on the named disk file "FILNAM." PUT TT Saves source file in memory on track "TT", and following tracks. RET ASM Restart the assembler. (Not present on all disks) RET BAS Restart BASIC. RET EM Restart the Extended Monitor. (Not present on all disks) RET MON Restart the Prom Monitor (via RST vector). SAVE TT,S=NNNN/P Save memory from location "NNNN" on track "TT" sector "S" for "P" pages. SELECT X Select disk drive, "X" where "X" can be, A, B, C, or D. Select enables the requested drive and homes the head to track $\emptyset$ . XQT FILNAM Load the file, "FILNAM" as if it were a source file, and transfer control to location \$327E. #### NOTE: - -Only the first 2 characters are used in recognizing a command. The rest up to the blank are ignored. - The line input buffer can only hold 18 characters including the return. - -The DOS can be reentered at 9543 (\$2547). - -File names must start with an "A" to "Z" and can be only 6 characters long. - -The dictionary is always maintained on disk. This permits the interchange of diskettes. - -The following control keys are valid: CONTROL-Q continue output from a CONTROL - S CONTROL—S Stop output to the console CONTROL-U delete entire line as input SHIFT-O delete the last character (polled keyboards) SHIFT-P delete entire line as input (polled keyboards) ### **MEMORY ALLOCATION** 0000-22FF BASIC or Assembler/Extended Monitor 2200-22FE Cold start initialization on boot 2300-265B Input/Output handlers 265C-2A4A Floppy disk drivers 2A4B-2E78 OS-65D V3.Ø Operating system kernel 2E79-2F78 Directory buffer 2F79-3178 Page 0/1 swap buffer 3179—3278 DOS extensions 3279—327D Source file header 327E— Source File #### **DISKETTE ALLOCATION** $\emptyset$ -1 OS-65D V3.(N bootstrap-loads to \$22 $\emptyset$ 0 for 8 pages). 2-6 9-1/2 Digit Microsoft BASIC. 7–9 Assembler-Editor (if present) 10-11 Extended Monitor (if present) 12 Sector 1—Directory, page 1. Sector 2—Directory, page 2. Sector 3-BASIC overlays. Sector 4-GET/PUT overlays. TrackØ/Copier utility (loads to \$\0200 \text{ for 5 pages}). 14-38 User programs and OS-65D utility BASIC programs. Compare routine, on some disks only. ### I/O FLAG BIT SETTINGS #### INPUT: Bit Ø—ACIA on CPU board (terminal). Bit 1-Keyboard on 540 board. Bit 2-UART on 550 board. Bit 3-NULL Bit 4—Memory input (auto incrementing). Bit 5—Memory buffered disk input. Bit 6-Memory buffered disk input. Bit 7-550 board ACIA input. As selected by index at location \$2323 (8995 decimal). #### OUTPUT: Bit Ø-ACIA on CPU board (terminal). Bit 1-Video output on 540 board. Bit 2-UART on 550 board. Bit 3—Line printer interface. Bit 4—Memory output (auto incrementing). Bit 5-Memory buffered disk output. Bit 6—Memory buffered disk output. Bit 7-550 board ACIA output. As selected by index. ### 9 DIGIT BASIC EXTENSIONS INPUT # (DEVICE NUMBER) INPUT "TEXT";# (DEVICE NUMBER) PRINT # (DEVICE NUMBER): LIST # (DEVICE NUMBER) WHERE (DEVICE NUMBER) FOR OUTPUT IS: 1-ACIA terminal 2-540 video terminal 3-550 ACIA UART port 4—Line printer (input is set to new device, output is set to null device. If device number > 3, null inputs are ignored. (print "TEXT" at current output device, then function as above). (print output for this command at new device). (list program or segments of program to new device). - 5-Memory output - 6-Memory buffered disk output (bit 5). - 7-Memory buffered disk output (bit 6). - 8-550 ACIA output - 9-Null output ### (DEVICE NUMBER) FOR INPUT IS: - 1-ACIA terminal - 2-540 keyboard - 3-550 ACIA UART port - 4-Null device - 5-Memory input - 6-Memory buffered disk input (bit 5). - 7-Memory buffered disk input (bit 6). - 8-550 ACIA input - 9-Null Input EXIT RUN (STRING) DISK! (STRING) DISK OPEN, (DEVICE), (STRING) DISK CLOSE, (DEVICE) DISK GET, (RECORD NUMBER) DISK PUT Fxit to OS-65D V3. N Load and run file with name in (STRING). Send (STRING) to OS-65D V3. N as a command line. Open sequential access disk file with file name, (STRING) using memory buffered disk I/O distributor device number 6 or 7. Reads first track of file to memory and sets up the memory pointers to start of buffer. Forces a disk write of the current buffer contents to current track. Using last file opened on the LUN (logical unit number) 6 device, a calculated track is read into memory. Where that track is: INT (REC.NUM)/24+base track given in last open command. It also sets both memory pointers to: 128\*(REC. NUM.) –INT(REC. NUM.)/24)) +base buffer address for LUN 6 device. Write device 6 buffer out to disk. The effect is the same as a "DISK CLOSE,6". ### **EXTENSIONS TO ASSEMBLER (Available As An Option)** For more details refer to the OSI Assembler Editor and Extended Monitor Reference Manual. Exit to OS-65D V3.N H(HEX NUM) Set high memory limit to (HEX NUM). M(HEX NUM) Set memory offset for A3 assembly to (HEX NUM). !(CMD LINE) Send (CMD LINE) to OS-65D V3 as a command to be executed and then return to assembler. CONTROL-I Tab 8 spaces. Also: CONTROL-U 7 spaces. CONTROL-Y 6 spaces. CONTROL-T 5 spaces. CONTROL-R 4 spaces. CONTROL-E 3 spaces. CONTROL-C Abort current operation. ## **EXTENDED MONITOR** (Available As An Option) For more details refer to the OSI Assembler Editor and Extended Monitor Reference Manual. !TEXT Send "TEXT" to OS-65D V3 as a command. @NNNN Open memory location "NNNN" for examination. Subcommands: LF-Open next location. CR-Close location. DD—Place "DD" into location. "—Print ASCII value of location. /-Reopen location. Uparrow-Open previous location. A Print AC from breakpoint. BN,LLLL Place breakpoint "N" (1-8) at location, "LLLL". C Continue from last breakpoint. DNNNN,MMMM Dump memory from "NNNN" to "MMMM". EN Eliminate breakpoint "N". EXIT Exit to OS-65D V3. N FNNNN,MMMM=DD Fill memory from "NNNN" to "MMMM"-1 with "DD". **GNNNN** Transfer control to location "NNNN" HNNNN,MMMM(OP) Hexadecimal calculator prints result of "NNNN" (OP) "MMMM" where (OP) is + - \* /. ı Print break information for last breakpoint. K Print stack pointer from breakpoint. L Load memory from cassette. MNNNN=MMMM,LLLL Move memory block "MMMM" to "LLLL" -1 to location "NNNN" and up in memory. NHEX)NNNN,MMMM Search for string of bytes "HEX" (1-4) between memory location 'NNNN" and "MMMM"-1. 0 Print overflow/remainder from hex calculator. P Print processor status word from breakpoint. | QNNNN | Disassemble 23 lines from location "NNNN". A linefeed continues disassembly for 23 more. | |------------------|------------------------------------------------------------------------------------------| | RMMMM=NNNN,LLLL | Relocate "NNNN" to "LLLL"-1 to location "MMMM" | | SMMMM,NNNN | Save memory block, "MMMM" to "NNNN"-1 on cassette. | | Т | Print breakpoint table. | | V | View contents of cassette. | | WTEXT) MMMM,NNNN | Search for ASCII string "TEXT" between "MMMM" and "NNNN"-1 | | X | Print X index register from last break. | | Υ | Print Y index register from last break. | NOTE: All commands are line buffered by OS-65D. Thus only 18 characters per line are allowed and CONTROL-U and BACKARROW apply. ### **SOURCE FILE FORMAT** | RELATIVE DISK | MEMORY | | |---------------|--------------|-----------------------| | ADDRESS | ADDRESS | USAGE | | Ø | \$3279 | Source start (low) | | ĺ | \$327A | Source start (high) | | 2 | \$327B | Source end (low) | | 3 | \$327C | Source end (high) | | 4 | \$327D | Number of tracks req. | | 5 and on | \$327 and on | Source text | ### **DIRECTORY FORMAT** Two sectors (1 and 2) on track 12 hold the directory information. Each entry requires 8 bytes. Thus there are a total of 64 entries between the two sectors. The entries are formatted as follows: - Ø-5 ASCII 6 character name of file - 6 BCD first track of file - 7 BCD last track of file (included in file). ### TRACK FORMATTING The remaining tracks are formatted as follows: - 10 millisecond delay after the index hole - a 2 byte track start code, \$43 \$57 - BCD track number - a track type code, always a \$58 There can be any mixture of various length sectors hereafter. The total page count cannot exceed 8 pages if more than one sector is on any given track. - -Each sector is written in the following format: - -previous sector length (4 if none before) times 800 microseconds of delay - -sector start code, \$76 - -sector number in binary - -sector length in binary - -sector data ### **DISKETTE COPIER** The diskette copy utility is found on track 13, sector 1. It should be loaded into location 200 with a "CA 0200 = 13,1. To start it, type "G00200." To select the copier type a "1." Destination disks must be initialized prior to copying. This is normally used only on computers with two disk drives. ## TRACK Ø READ/WRITE UTILITY This utility permits the reading of data on track $\emptyset$ anywhere into memory. Also the capability is available to write any block of memory to track $\emptyset$ specifying a load address and page count. The track zero format is as follows: - -10 millisecond delay after the index hole - -the load address of the track in high-low form - -the page count of how much data is on track zero # DOS ERROR MESSAGES | 1 | Cannot read sector (parity error) | | | | | |---|---------------------------------------------------|--|--|--|--| | 2 | Cannot write sector (reread error) | | | | | | 3 | Track zero write protected against that operation | | | | | | 4 | Disk is write protected | | | | | | 5 | See error (track header does not match track) | | | | | | 6 | Drive not ready | | | | | | 7 | Syntax error in command line | | | | | | 8 | Bad track number | | | | | | 9 | Cannot find track header within one rev of disk | | | | | | A | Cannot find sector before one requested | | | | | | В | Bad sector length value | | | | | | C | Cannot find name in directory | | | | | | D | Read/Write attempted past end of named file | | | | | | | | | | | | | | | BASIC-IN-ROM ERROR CODES | |------|-----------|-------------------------------------------------------------------------------------------------------------------| | DD ( | CODE<br>D | DEFINITION Double Dimension: Variable dimensioned twice. Remember subscripted variables default to dimension 10. | | FC | F 🚜 | Function Call error: Parameter passed to function out of range. | | ID | L | Illegal Direct: Input or DEFIN statements can not be used<br>in direct mode. | | NF | N 🖰 | NEXT without FOR: | | OD | 0 🚅 | Out of Data: More reads than DATA | | OM | 0 - | Out of Memory: Program too big or too many GOSUBs, FOR NEXT loops or variables | | OV | 0 | Overflow: Result of calculation too large for BASIC. | | SN | S | Snytax error: Typo, etc. | | RG | R | RETURN without GOSUB | | US | U 📥 | Undefined Statement: Attempt to jump to non-existent line number | | 10 | 1 | Division by Zero | | CN | C | Continue errors: attempt to inappropriately continue from BREAK or STOP | | LS | L | Long String: String longer than 255 characters | | OS | 0 | Out of String Space: Same as OM | | ST | s 💻 | String Temporaries: String expression too complex. | | TM | Т - | Type Mismatch: String variable mismatched to numeric variable | | UF | U | <b>└</b> Undefined Function | #### DISK BASIC ERROR CODE TABLE | BS | Bad Subscript: Matrix outside DIM statement range, etc. | |----|-------------------------------------------------------------------------------------------------------| | CN | Continue Errors: Attempt to inappropriately continue from BREAK or STOP. | | DD | Double Dimension: Variable dimensioned twice. Remember subscripted variables default to dimension 10. | | FC | Function Call Error: Parameter passed to function out of range. | | ID | Illegal Direct: INPUT and DEFIN statements cannot be used in direct mode. | | LS | Long String: String longer than 255 characters. | | NF | NEXT without FOR. | | OD | Out of Data: More reads than data. | | ОМ | Out of Memory: Program too big or too many GOSUBs, FOR-NEXT loops or variables. | | | | | OS | Out of String Space: Same as OM. | | | | |----|------------------------------------------------------------------|--|--|--| | OV | Overflow: Result of calculation too large. | | | | | RG | RETURN without GOSUB. | | | | | SN | Syntax Error: Typo, etc. | | | | | ST | String Temporaries: String expression too complex. | | | | | TM | Type Mismatch: String variable mismatched to numeric variable. | | | | | UF | Undefined Function. | | | | | US | Undefined Statement: Attempt to jump to nonexistent line number. | | | | | /Ø | Division by Zero. | | | | ### **FLOPPY DISK CARE** The floppy diskettes and disk drives are delicate pieces of hardware, and should be treated as such. The following rules are strongly recommended to maintain their good condition. #### HANDLING FLOPPY DISKETTES - 1. Do not touch the surface of the diskette or allow any dirt or dust to come into contact with the surfaces. - 2. Be very careful in labeling diskettes, so as not to damage them. - 3. Do not bend or fold the diskette. - 4. Store the diskette only at temperatures from $10^{\circ}$ to $125^{\circ}$ F. $(-18^{\circ}$ to $51^{\circ}$ C.) and only use a diskette in a drive if both are at the same temperature. - 5. Do not allow magnets to come near the diskette. - 6. Always place the diskette in its jacket and store it upright in its box when not in use. - 7. If you must lay a diskette on a table, place it with the label side down, to avoid damaging the recording side. - 8. When inserting a diskette in a drive, insert it carefully with both hands and an even pressure, until you hear a click. Make sure that it *has not* come back out slightly before you close the drive. - 9. Do not try to clean the surface of the diskette. - 10. Turn on the power to your computer before you insert the diskette, and turn power off only after you remove the diskette. *Never turn the power on or off while the diskette is in the drive.* - 11. Insert the diskette in the disk drive with the label side up. - 12. Use only 100% certified single index hole diskettes, such as the ones which OSI offers. #### HANDLING DISK DRIVES - 1. The disk drive should only be turned on or off when the computer is already on. - 2. Diskettes should be inserted in the drive after the drive has been turned on, and removed before it is turned off. - 3. Do not obstruct the air flow in the rear of the disk drive. - 4. Disk drives and diskettes will not operate in very high or very low humidity environments. Air conditioning is generally not required unless the unit is operated in a basement, or other area where condensed moisture is likely to occur. RUGS AND CARPETING IN THE VICINITY OF THE COMPUTER SHOULD BE TREATED FOR ANTI-STATIC. - 5. The disk drive, being a mechanical rotational device, is susceptible to line voltage and line frequency variations. The unit must be operated at 60 Hz for write operations to work. - 6. The floppy disk system is mechanical, and thus subject to wear on pulleys, belts, bearings, etc. It is a good practice to remove diskettes from disk drives when disk operations are not anticipated during the next hour or so. Also, turn off disk drives when not in use for prolonged periods of time. # CHARACTER GRAPHICS AND VIDEO SCREEN LAYOUT 245 \$F5 246 \$F6 247 \$F7 248 \$F8 \$F9 249 25Ø \$FA 251 \$FB 252 \$FC 253 \$FD 254 \$FE 255 \$FF ### POKE LIST-CIP DISK BASIC As systems develop, different locations are committed to hold parameters. Many of these parameters have been mentioned in the text material. These parameters are collected here, along with some other useful parameters which may be needed by an advanced programmer. Some parameters appear several times, since they are relabeled by other utility programs. Caution, care must be taken when POKEing any of these locations to avoid system errors and subsequent software losses. | LOCATIO<br>DECIMAL | ON<br>HEX | NORMAL<br>CONTENTS | USE | |--------------------|-----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 23 | 17 | 132 | Terminal width (number of printer characters per line). The default value is 132. Note, this is not to be confused with the video display width (64 characters). | | 24 | 18 | 112 | Number of characters in BASIC's 14 character fields (112 characters = 8 fields) when outputting variables separated by commas. | | 120 | 78 | 127 | Lo-Hi byte address of the beginning of BASIC work space (note | | 121 | 79 | 50 | 127=\$7F, 5Ø=\$32). | | 132 | 84 | * | Lo-Hi byte address of the end of the BASIC work space. (*con- | | 133 | 85 | * | tents vary according to memory size such as 255(\$FF) and 95 (\$5F) for \$5FFF=24575 for 24K) | | 222 | DE | Ø | Location to enable or disable RTMON (real time monitor). 1 enables and Ø disables RTMON. | | 223 | DF | Ø | Location to start count down timer. A 1 starts the timer, and a Ø stops it. | | 224 | ΕØ | Ø | Contains the number of hours for timer to count down. | | 225 | E1 | Ø | Contains the number of minutes to count down. | | 226 | E2 | Ø | Contains the number of seconds to count down. | | 23Ø-241 | E6-F1 | Ø | Identifies the I/O masks used for external polling of AC events, i.e. determines which PIA lines are scanned. | | 249 | F9 | Ø | Should contain the latest value at 56832 (\$DEØØ) which is a "write only" register. This location does not change the display | | 548 | 224 | | format but acts to maintain the format during ACTL use. | | 549 | 225 | _ | Hi-Lo byte address for AC driver; with no buffers these locations (with AC enabled) will contain \$327F | | 741 | 2E5 | 1Ø | Control location for "LIST". Enable with a 76, disable with a 10. | | 75Ø | 2EE | 1Ø | Control location for "NEW". Enable with a 76, disable with a 10. | | 1797 | 7Ø5 | 32 | Controls line number listing of BASIC programs, enable with a | | 1737 | 100 | 32 | 32, defeat with a 44. | | 2073 | 819 | 173 | "CONTROL C" termination of BASIC programs. Enable with 173, disable with 96. | | 2200 | 898 | _ | The monitor ROM directs Track Ø to load here at \$2200. | | 2888 | B48 | 27 | A 27 present here allows any null input (carriage return only) to | | 2000 | 540 | 5.1 | force into immediate jumping out of the program. Disable this with a Ø. Location 8722 must also be set to Ø. | | 2893 | B4D | 55 | Alternate "break on null input" enable/disable location. A null | | 2894 | B4E | 08 | input will produce a "REDO FROM START" message when 2893 and 2894 are POKEd with 28 and 11 respectively. | | LOCATIO<br>DECIMAL | N<br>HEX | NORMAL<br>CONTENTS | USE | |--------------------|--------------|--------------------|---------------------------------------------------------------------------------------------------------------------------| | 2972 | В9С | 58 | Normally a comma is a string input termination. This may be disabled with a 13 (see 2976). | | 2976 | BAØ | 44 | A colon is also a string input terminator, this is disabled with a 13 (see 2972). | | 87Ø8 | 2204 | 41 | Output flag for peripheral devices | | 8722 | 2212 | 27 | Null input if $= \emptyset \emptyset$ , normal input if $= 27$ | | 89Ø2 | 22C6 | ØØ | Determines which registers (less 1) RTMON scans (see the AC control section). | | 8917 | 22D5 | _ | USR(X) Disk Operation Code: Ø—write to Drive A | | | | | 3—read from Drive A<br>6—write to Drive B | | | | | 9—read from Drive B | | 8954 | 22FA | _ | Location of JSR to a USR function. Preset to JSR \$22D4, i.e., set up for USR(X) Disk Operation. | | 896Ø | 2300 | - | Has page number of highest RAM location found on OS-65D's cold start boot in. This is the default high memory address for | | | | | the assembler and BASIC. | | 8993 | 2321 | _ | I/O Distributor INPUT flag | | 8994 | 2322 | _ | I/O Distributor OUTPUT flag | | 8995 | 2323 | _ | Index to current ACIA on 550 board. If numbered from 1 to 15 the value POKEd here is 2 times the ACIA number. | | 8996 | 2324 | - | Location of a random number seed. This location is constantly incremented during keyboard polling. | | 9000 | 2328 | 7D | Pointer to Disk Buffer | | 9001 | 2329 | 3E | (Usually \$3E7D) | | 9002 | 232A | _ | First Track Disk 1 | | 9ØØ3 | 232B | | Last Track Disk 1 | | 9004 | 232C | | Current Track in Buffer 1 | | 9005 | 232D | S | Buffer 1 Dirty Flag (Clear=Ø) | | | | | 6 to 9Ø13 Pertain To Disk 2 | | 9006 | 232E | 7E | Pointer to Disk 2 Buffer Start. | | 9ØØ7 | 232F | ЗА | This area used for Disk 2 data transfer operations. (Usually \$3a7E) | | 9ØØ8 | 233Ø | 7E | Pointer to Disk 2 Buffer End | | 9009 | 2331 | 42 | (Usually \$427E) | | 9010 | 2332 | _ | First Track Disk 2 | | 9Ø11 | 2333 | _ | Last Track Disk 2 | | 9Ø12 | 2334 | _ | Current Track in Buffer 2 | | 9Ø13 | 2335 | _ | Buffer 2 Dirty Flag (Clean = Ø) Pointer to Memory Storage Input (Lo and Hi Byte). Memory is | | 9Ø98 | 238A | | | | 9Ø99 | 238B | | dedicated for use as file.<br>Pointer to Memory Storage Output (Lo and Hi Byte). Use of | | 9105 | 2391 | | | | 91Ø6 | 2392 | 75 | memory as a file. Disk Buffer 1 Input Current Address (Lo and Hi Byte). Default | | 9132 | 23AC | 7E | value is \$327E. | | 9133 | 23AD | 32 | Disk Buffer 1 Output Current Address (Lo and Hi Byte). Default | | 9155 | 23C3 | 7E<br>32 | value is \$327E. | | 9156 | 23C4<br>23FD | 7E | Disk Buffer 2 Input Current Address (Lo and Hi Byte). Default | | 9213 | 23FE | 3E | value is \$3E7E. | | 9214<br>9238 | 2416 | 7E | Disk Buffer 2 Output Current Address (Lo and Hi Byte). Default | | 9239 | 2417 | 3E | value is \$3E7E. | | 9368 | 2498 | _ | Indirect File Input Address (Hi Byte) (Lo=ØØ) | | LOCATI | | NORMAL | 1)1 | | | |----------------|------|--------------|---------------------------------------------------------------------------------|---------------------------------------|-------------| | DECIMAL | HEX | CONTENTS | USE | | | | 9392 | 24BØ | _ | I/O Status used by ACTRL. | | | | 94Ø3 | 24BB | | See AC control section. | | | | 948Ø | 2508 | _ | Real Time Clock, Hours | | | | 9481 | 25Ø9 | - | Real Time Clock, Minutes | | | | 9482 | 25ØA | | Real Time Clock, Seconds | | | | 9483 | 25ØB | _ | Real Time Clock, Days | | | | 9543 | 2547 | <u> </u> | Contents is hex DOS Entry Point. Under 2547, then "GO". | Machine Mon | itor Load | | 9554 | 2552 | _ | Pointer to Indirect File (Hi Byte only) for | r output (Lo= | ØØ) | | 9667 | 25C3 | 215 | When POKEd with N (207-215) and a LI this will move the scroll up 4*(215-N) lir | IST command | is given, | | 9682 | 25D2 | 95 | Cursor symbol character designation, for | | n. | | 988Ø | 2646 | 32 | Display control parameters. Single | | | | | | | Space=128; Quad Space=255; Two co | olumns=32. | | | 9822 | 265D | - | Sector for USR(X) on disk | | | | 9823 | 265F | <del>-</del> | Page Count for USR(X) Disk. Read or W | | | | 9824 | 266Ø | _ | Pointer to memory for USR(X). (Lo and Hi | Bytes) USR(X | () will re- | | 9825 | 2661 | _ | side in location pointed to. | | | | 9826 | 2662 | _ | Contains track number for USR(X) on di | | | | 9976 | 26F8 | _ | Disable ":" Terminator. See Location 29 | | | | 10950 | 2AC6 | Ø2 | Console terminal number. Video termina | | 100 | | 11511<br>12Ø42 | 2CF7 | _ | Used by Disk Page Ø/1 Swap Used by R | landom Acces | s File | | 12042 | 2FØA | | Calculation routines to set record size. | | | | 12921 | 3279 | | Start of work space header. | | | | 12922 | 327A | | If contains 32, then have no buffers | | | | | | | If contains 3A, then have 1 buffer: | | | | | | | If contains 42, then have 2 buffers | | | | 12925 | 327D | | Number of tracks to load from disk. | | | | 15997 | 3E7D | | Disk 1 Buffer End | | | | 15998 | 3E7E | | Disk 2 Buffer Start | | | | 19Ø69 | 4A7D | | Disk 2 Buffer End | | | | 5Ø944 | C7ØØ | | OSI BUS PIA | | | | 5Ø948 | C7Ø4 | | PIA register's location. See PIA section f | for use. | | | to | | to | | | | | 5Ø959 | C7ØE | | | | | | 53381 | DØ85 | | Video screen memory storage. Video scre | een memory is | 8 hit (1 | | | | | byte) storage locations (24 × 24 format) | oon momory to | יו) זום טינ | | to | | to | | | | | 54141 | D37D | 10 | | | | | | | | 2.50 | | | | 544Ø5 | D485 | | Video color image storage. Only 4 bits ar | re available fo | r use. | | to | | to | | | | | 55165 | D77D | | | | | | 56832 | DEØØ | | Screen Format (64 $ imes$ 32 characters, or 3 | 32 × 32) sour | d color | | | | | selected. See video section for POKEs. | , , , , , , , , , , , , , , , , , , , | ia, coloi | | 57Ø88 | DFØØ | | Joystick A,B; Also Tone; Also Polled Key | board location | n | | 57Ø89 | DFØ1 | | D/A Converter Port. (Also frequency divid | | | | | | | can only be POKEd. See tone generation | | | | LOCATI | ON | NORMAL | | |---------|------|----------|------------------------------------------------------------------------------------| | DECIMAL | HEX | CONTENTS | USE | | 63232 | F7ØØ | | PIA Port address. Home security devices share this location with normal PIA lines. | | 64512 | FCØØ | | ACIA Port address. Printer and modem share this location. | # INDEX | | CA-2150-52,57 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | A | CA-22 | | | CA-23 | | AC Control | CA-24 | | AC12P | CA-25 | | AC17P | Calculator (Mode) | | Accessory Interface 59 | Cassette | | | BASIC-in-ROM | | ACIA | Cold Start | | Action Key | Data Storage | | Address (Memory) | LOAD 15,35 | | Advanced | | | Features | SAVE | | Topics | Change Utility | | Alarm Operations | Character Graphics | | Analog | Characters (Lower Case) | | I/O | Clock, Time of Day | | Appliance Control | Code, Machine Language | | Applications Program | Cold Start | | ASCII | Color Graphics | | ASM (Assembler) | Computer Setup | | Autorun | Cassette | | | Disk | | | Computer Interface to 16 Pin I/O Bus | | | Conditional Statement | | | Connections | | TO TO THE PARTY OF | | | В | Control C 13.36-38 | | В | Control C | | | Control Q | | Backpanel Connectors | Control Q | | Backpanel Connectors | Control Q 31,79 Control S 31,79 Conversions | | Backpanel Connectors | Control Q 31,79 Control S 31,79 Conversions Digital to Analog 26-28 | | Backpanel Connectors | Control Q31,79Control S31,79Conversions26-28Digital to Analog26-28Hexadecimal to Decimal Chart70-73 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC (Disk) .34,85,86,87 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC-in-ROM (Cassette) .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 | | Backpanel Connectors 7-11 BASIC Commands 14,18-21 BASIC Errors 12,86 BASIC-in-ROM (Cassette) 12,86 BASIC (Disk) 34,85,86,87 BASIC Extensions 30,37,41,42,81 BASIC Features 18 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC-in-ROM (Cassette) .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 BASIC Features .18 BASIC Programming .12,18-21,23 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 | | Backpanel Connectors 7-11 BASIC Commands 14,18-21 BASIC Errors 12,86 BASIC-in-ROM (Cassette) 12,86 BASIC (Disk) 34,85,86,87 BASIC Extensions 30,37,41,42,81 BASIC Features 18 BASIC Programming 12,18-21,23 Baud (Rate) 64 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC-in-ROM (Cassette) .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 BASIC Features .18 BASIC Programming .12,18-21,23 Baud (Rate) .64 Bit Switching and Sensing .51-55 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 | | Backpanel Connectors 7-11 BASIC Commands 14,18-21 BASIC Errors 12,86 BASIC-in-ROM (Cassette) 12,86 BASIC (Disk) 34,85,86,87 BASIC Extensions 30,37,41,42,81 BASIC Features 18 BASIC Programming 12,18-21,23 Baud (Rate) 64 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC-in-ROM (Cassette) .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 BASIC Features .18 BASIC Programming .12,18-21,23 Baud (Rate) .64 Bit Switching and Sensing .51-55 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 | | Backpanel Connectors 7-11 BASIC Commands 14,18-21 BASIC Errors 12,86 BASIC-in-ROM (Cassette) 34,85,86,87 BASIC Extensions 30,37,41,42,81 BASIC Features 18 BASIC Programming 12,18-21,23 Baud (Rate) 64 Bit Switching and Sensing 51-55 BEXEC 31,32 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 | | Backpanel Connectors 7-11 BASIC Commands 14,18-21 BASIC Errors 12,86 BASIC (Disk) 34,85,86,87 BASIC Extensions 30,37,41,42,81 BASIC Features 18 BASIC Programming 12,18-21,23 Baud (Rate) 64 Bit Switching and Sensing 51-55 BEXEC 31,32 Block 22 BREAK 12-14,21 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 | | Backpanel Connectors 7-11 BASIC Commands 14,18-21 BASIC Errors 12,86 BASIC (Disk) 34,85,86,87 BASIC Extensions 30,37,41,42,81 BASIC Features 18 BASIC Programming 12,18-21,23 Baud (Rate) 64 Bit Switching and Sensing 51-55 BEXEC 31,32 Block 22 BREAK 12-14,21 Breakpoint 82,83 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 BASIC Features .18 BASIC Programming .12,18-21,23 Baud (Rate) .64 Bit Switching and Sensing .51-55 BEXEC .31,32 Block .22 BREAK .12-14,21 Breakpoint .82,83 BUS, 16 Pin I/O .56 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 D DAC 26-28,60,62,63,77 Data Register (PIA) 52 | | Backpanel Connectors 7-11 BASIC Commands 14,18-21 BASIC Errors 12,86 BASIC (Disk) 34,85,86,87 BASIC Extensions 30,37,41,42,81 BASIC Features 18 BASIC Programming 12,18-21,23 Baud (Rate) 64 Bit Switching and Sensing 51-55 BEXEC 31,32 Block 22 BREAK 12-14,21 Breakpoint 82,83 | Control Q 31,79 Control S 31,79 Conversions Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 D 26-28,60,62,63,77 Data Register (PIA) 52 Default 30,41,52,96,97 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 BASIC Features .18 BASIC Programming .12,18-21,23 Baud (Rate) .64 Bit Switching and Sensing .51-55 BEXEC .31,32 Block .22 BREAK .12-14,21 Breakpoint .82,83 BUS, 16 Pin I/O .56 | Control Q 31,79 Control S 31,79 Conversions Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 D 26-28,60,62,63,77 Data Register (PIA) 52 Default 30,41,52,96,97 DELETE (files) 31,33 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 BASIC Features .18 BASIC Programming .12,18-21,23 Baud (Rate) .64 Bit Switching and Sensing .51-55 BEXEC .31,32 Block .22 BREAK .12-14,21 Breakpoint .82,83 BUS, 16 Pin I/O .56 | Control Q 31,79 Control S 31,79 Conversions Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 BASIC Features .18 BASIC Programming .12,18-21,23 Baud (Rate) .64 Bit Switching and Sensing .51-55 BEXEC .31,32 Block .22 BREAK .12-14,21 Breakpoint .82,83 BUS, 16 Pin I/O .56 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 D 26-28,60,62,63,77 Data Register (PIA) 52 Default 30,41,52,96,97 DELETE (files) 31,33 Device Numbers 81 Digital to Analog Converter 26-28,60,62,63 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 BASIC Features .18 BASIC Programming .12,18-21,23 Baud (Rate) .64 Bit Switching and Sensing .51-55 BEXEC .31,32 Block .22 BREAK .12-14,21 Breakpoint .82,83 BUS, 16 Pin I/O .56 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 D 26-28,60,62,63,77 Data Register (PIA) 52 Default 30,41,52,96,97 DELETE (files) 31,33 Device Numbers 81 Digital to Analog Converter 26-28,60,62,63 Dimension (DIM) 86 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 BASIC Features .18 BASIC Programming .12,18-21,23 Baud (Rate) .64 Bit Switching and Sensing .51-55 BEXEC .31,32 Block .22 BREAK .12-14,21 Breakpoint .82,83 BUS, 16 Pin I/O .56 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 D 26-28,60,62,63,77 Data Register (PIA) 52 Default 30,41,52,96,97 DELETE (files) 31,33 Device Numbers 81 Digital to Analog Converter 26-28,60,62,63 Dimension (DIM) 86 Directory | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 D 26-28,60,62,63,77 Data Register (PIA) 52 Default 30,41,52,96,97 DELETE (files) 31,33 Device Numbers 81 Digital to Analog Converter 26-28,60,62,63 Dimension (DIM) 86 Directory DIR 16,17,31,32,79 | | Backpanel Connectors .7-11 BASIC Commands .14,18-21 BASIC Errors .12,86 BASIC (Disk) .34,85,86,87 BASIC Extensions .30,37,41,42,81 BASIC Features .18 BASIC Programming .12,18-21,23 Baud (Rate) .64 Bit Switching and Sensing .51-55 BEXEC .31,32 Block .22 BREAK .12-14,21 Breakpoint .82,83 BUS, 16 Pin I/O .56 | Control Q 31,79 Control S 31,79 Conversions 26-28 Digital to Analog 26-28 Hexadecimal to Decimal Chart 70-73 Copier, Diskette 84 Countdown Timer 50 CREATE 31-33 D 26-28,60,62,63,77 Data Register (PIA) 52 Default 30,41,52,96,97 DELETE (files) 31,33 Device Numbers 81 Digital to Analog Converter 26-28,60,62,63 Dimension (DIM) 86 Directory | | Disk 80 BASIC Commands 34,35,41,42,78 Care of 30,88 Extensions 80,81 Organization 32,33 Read/Write 30,31 Track Formatting 32,33,83 Track Φ Read/Write 84 Utilities 32-35 DOS (disk operating system) 30,35 Commands 30-35 Errors (ERR) 31,34,86,87 | Hexadecimal to Decimal Tables | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------| | | Parallel | | E | Flag Bit, Settings | | Edit 18 Endless Loop 20 Error 31,34,85-87 BASIC-in-ROM 86 Disk BASIC 35,86,87 DOS 85 Numbers 85 EXIT 35 Extensions to Disk BASIC 80,81 External Switches 51 | J Joysticks | | | | | F | Keyboard 13,36-40 Kernal (DOS) 35 Keypads 48,49 | | Files 4,17,30,35 CREATE 31-33 DELETE 33,34 Named 32-34 Flag Bit Setting, I/O 80 | L | | G | Library (Program) 3,4,10,15 Line Numbering 18-24 LOAD 15,16,29,30,34 LIST 15,16,19,31,32,34 Leons Explanation of 20,21,23 | | 9 | Loops, Explanation of | | Generator, Tone 62,63 GET (Disk) 81 Graphics 22-25,38,89-95 | 20 | | | M | | Head End Cards | Machine Code (Language) 4,26,27,31 Memory 3,4,65 Map 22,74-76 Microprocessor 4,65 | | Mini-floppy Tracks 32,33,80 Modem 3,43 Modulator, RF 9 Monitor, Machine Code 4,14,31 Monitor, Video 9,65 Monitor, Extended 79,82 | Real Time 50,56,98 Clock 50,56,98 Remarks (REM) 18 Return 12,13,15,18 RF Modulator/Standard TV 9 RETURN BASIC (RE BA) 35 ROM 4,65 RUN 15-17,32-34 | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | N | | | Named Files 32-34 NEW 14,15,18,19,31,45 | S | | Ο | SAVE 30 Screen Width 25,77 Scroll 23,60,61 | | | SCRTCH 33<br>Security 50 | | OS-65D 31-35,78-84 OS-65D User's Guide 35,78,79 Overview (C1P System) 4,5 | Shift (O) 13,18,79 Shift (P) 13,18,79 Software 3 Source File Format 83 | | P | Sound 26-28,60-63 Special Keys 13 Statement, BASIC 18,20 SWAP 26 Syntax (Error) 85-87 System Overview (C1P) 4,5 | | Password 32-34 Page 33 Peripherals 41-59 PIA Data 52 PICO DOS 16,30 POKEs and PEEKs 4,23-27,29,37-40,60-63,77 POKE C1P Disk BASIC 96-99 | T | | Polling (keyboard) | Telephone Interface | | Printer 41-43 Program 3,4,10 Library 3,4,10,15 Utility 17,33-35 Prompt (Message) 12,14,16,18,31,35 | Terminal Communications 43 Timer (countdown) 50 Tone Generator 26,62,63 Tracks (Mini-floppy) 32-34 Formatting 83 Tutor, Hexadecimal to Decimal 66-69 | | PUT (DISK) | | | | | | R | U | | RAM 3,4,65 Read/Write Cassette 15,29,35 Disk 31-34 | UNLOCK 16,17,31 USR (X) Function 27 Utility Programs 17,31,33 | ---- | Variables | | |---------------|--| | Video | | | Connections | | | Memory Map | | | Screen Layout | | W-7 | Warm Start | <br>. 14 | |------------|----------| | | | # **OHIO SCIENTIFIC** 1333 S. Chillicothe Road - Aurora, OH 44202 Phone: [216] 831-5177