i £ 3] S ek
bEannhus s blbhd TELTETIE T
}thttonlhziiam TTILE

i EACAARI R ERRS AR &S

LW EERRARRARRRR AR
L R R RN T 1 A
L LRl ¢
LI EEREREE L L R
e L LSRR RS REEE S
s

ERE

ETR)

-

-
- e

IR AT
HRRE AR
TERhRkRRERERY

% &Y & Bk b

M
IR Y

PR Y
% : EEE EEEREILEE A ITEERIRR)
R EIEEREE SERERER SIZIERLY
ERERBRLIRAN 3 PRARAARY
A b SELT SIEETREY
AREEE R PR e
SERAETRETR I EAEIREEERICY .
EERESREERERSIENT R R ERE IR 112E
BEFSRRARRRAG ARS8 0004
SEEEEERERRRY 1l

BB BRI 20
ErPpRe e SEFRR ORI ¥

EEERBRREL

I E

(2 '

R RETREIRRY
R IR

¢ BIENRER
‘EERIER
2fF) R YR

(EE - FERR
PRI R SN

RESIEERB Ly

TIR]

.
221
I2ERIEIET i3 % 31
BERERINN 8 t

FEEY

SRR SRR D]
4 s L 'y ¢ EEEECER SRS RR R L

E2EEREE by

RS E R TR
ELRSTEERRTE

. |.¢-m*i Ty
E11TE hm 11%

TABLE OF CONTENTS

SECTION PAGE
WARRANTY CARD

2. GENERAL INTRODUCTIONiiiiiiainatrssnisansasssanininsaassssnsssnssssssssninsnnsases 3
3. UNPACKING INSTRUCTIONS iiiecirrnnasnssscnasasnansrssassasssssssenasnnsnnsssisns 6
4. CONNECTING YOUR UNIT TO THE VIDEO DISPLAYuvneiiiiiiiiciniinnnanrenrrananns 9
5. CONNECTING THE UNIT’S FLOPPIES OR CASSETTE SYSTEMcciiiiiiiiiiiiiinninns 10
6. START THE MACHINEiiciiiiiiirnranrreranssasassaassassnsssasssansannsssanssisseasns 12
7. RUNNING A “CANNED” PROGRAMcciiciriniiinnrinunannansersasssassassasssasansnsens 15
A) Loading Cassette Programsccoeuiiieauaniirncnssasasnsnininretsnsasasssssnasnanss 15

B) Loading Disk Programs.coiveetiunensreneionssnsasesisssnsisnsasasansssesensnns 16

8. RUNNING BASICoiiiiiiiaiirennnsnnsnsssssssssnsnssssnsssssssssssasssesssasanasssnssan 18
Q. GRHAPHICS. . iiiic oo 5 5o w5 o580 S0 wlnibin ¥60s 5 s 40684 &R wwes Sal o /aale o ewn e ¥ sivis seia seee sne eie s 68 22
10, SOUND ... oo cinivs s wipis sodis Siias iwi v aials SeiaE w6 § Fas SO Seles sl waan SAes &o s S S@w selve e we s 27
11. EXTERNAL STORAGE OF PROGRAMSiiiriniiirenasnnnnnasnsasnsssasnsnansasnninnnns 29
K) CasBotle BUOTADE & su. o sevs v suss s oo «cum wmun wosen G Stsm ssesa womn b S NEE Bo3 o8 29

B) The PICO Disk Operating SyStemccuvuuiuntieasiiesnssusassnesssnasarrarsanssne 30

C) The 0S-65D Disk Operating Systemccciiiiriaenrrernraiciensiieniaeiiaanes 31

12, ADVANCED FEATURESiitiiiiiiiiininnnnrraneassansssanssssnssssasseassassossasennanns 36
K) LOWRE CBB€ : 55+ oo vosii wows siuis 5008 91004 5800 1o sibiats witurd siste Ritouin wims M wivs Hinte s wiwion Ecmia mnsm pis'e 3 478 36

B) Keyboard Programmabilitycuieuireeeinsneearnreaiiienmireiiameimansninianans 36

13. PRINTER COMMUNICATIONS.oiiiiiitennnnaiirnannnnassssssssassannassssassssssnsnnns 41
A) BASIC-In-ROM—PrInter Uso. c... sus sume snigomnsnos vas exswna s g spbanmens gam meesnd & 41

B) 9-Digit Extended BASIC under OS-65D—Printer Useccvnviiiiiiiiininn, 41

14. MODEM AND TERMINAL COMMUNICATIONS.c.iiiiiinnnnrninrssaasassanssrsaranasnns 43
15. JOYSTICKS AND KEYPADSc.ciiiiiiiiniinanasssanansasaassnssrsssasssasssnsanssssnss 44
AN JOVSHCRE: s0n s sa vinwre duiis s s wmm womn wiommn xinewon w8 S4en Bisomn mip oided SR THIEH Somih Hiaeoin WPl oo 4 44

BY KQUBAEB.. :ios 55 v siis vl w/dis 5 5195 BIST Kal08 758 FIarva aers & 6ob i amess Ramm €xm s siahe Xescs a8 SIS EHAD EI00 S 48

16. AC REMOTE CONTROL, SECURITYcoiiiiiiiiiiinianneniiessssassnasanrtseastassanssans 50
17. PARALLEL 1/0. ... civnereeereanareinssssasasssssssssansssanssnsinanssnsnssassssssnsassnnasnns 51
18. CONNECTION OF 16-PIN BUS DEVICES.cciiiiiannnnnnnrrssassassssssannssnannsanss 56
19. ADVANCED FEATURES ¢« cuiiaui s s saus cu aiss siaan s ein s s sis sines saiee s ns s e ss seensaessssss 60

APPENDIX

L COMPUTER QLOBBARY : vooi vuws vun smns cwnvdns puig 5ais 5o sen v sus geos ks Dis Fe ki 5151 64
2. BINARY AND HEXADECIMALciiiiiitiiiietennranrentaneanesenesaeesassnnscnssnannnens 66
3. HEX-DECIMAL CONVERSION TABLES.0iuiuiiiiiiiiiinaniaaseansaneanenasnsnsensnnns 70
4 MEMORY MAPS. cues sums von sus sumws wss s sgss s9% 8 6ms geme mas Dl S99 Rk sois 597 6 Seuss 74
5. CONTROL REGISTERScciiuiiniiiiiiianneantrnnrenteasronsoasenasennsenssnsennsennenns 77
6. OS-65D SUMMARYttt it iatisessttitiatisentaeaseaeansanesnsansnasaninsensnsss 78
1. ERROR'MESSRQES.on ivn svos vni cus woies vonn ovds 03 ol 995 £90 SEOR Ses 56 £is 5ews Rael e 85
8. FLOPPY DISK CARE . . i 0ins sivin 5is s iois 5i6as 5558 Gms 9,650 1018 505 8505 5008 wnn wnn ke saen sese s 5 88
9. CHARACTER GRAPHICS AND VIDEO SCREEN LAYOUT.cuviriiniininrrinineininenninnns 89
10. PORE LIST—CAP DISK BASIC. ccox vwus wwws sun vs vy i sty s s sfise § o vises s aiale do i 96
INBREBR - on con oo min o voms d@as s £is S5ou Lo gas nRey UGS Lok SHEREaEEE NS 14w 0T FETE SRR A 100
TABLE OF FIGURES

FIGURE PAGE
1. REAR PANEL OF THE C1P SERIES 2 COMPUTER.........cccciiiiiiiiiiiiannniearasiiansnnsann, 7
2. SUPERBOARD Il POWER SUPPLY CONNECTIONS.........c.coiiiieiiniiinnncinnncsninnnssnnns 8
3. CHALLENGER 1P AND SUPERBOARD Il VIDEO CONNECTIONS cciineinrinnenns 9
4, C1P CASSETTE RECORDER CONNECTIONSccciiiiinirinrnneernnnssnrnsssnaisenannans 11
5. SUPERBOARD Il CASSETTE RECORDER CONNECTIONS..........ccoviiurnrrmincnnninnnnnens 11
6. OPERATION INSTRUCTIONS—OSI POLLED KEYBOARD.coviiiiininaiinininiinnnnnns 13
7. VIDEO MEMORY MAP—24x24 FORMATcutiiiiiiiriitiinarininninssnnnmesnssassnnasnns 21
8. VIDEO MEMORY MAP—24x48 FORMATciuiiiiinnnrisinaienrnnsrassnsmsnssnnssnnnnnss 22
9. DIRECTIONS FOR FOR-NEXT LOOP INCREMENTSccititiunnnnrnnnricnrnnrnnnrnnns 25
10. SWITCH MATRIX—C1P POLLED KEYBOARD RaThe e AR SRR T iR . . 37
11. DECIMAL VALUES RETURNED BY THE JOYSTICKSccciiiiuiiiiiiiieiiicniienannnns 44
B2, JOASTICIK .. con cone o wmnem s mwmmwas svs suws wws sew cos passses st SHTSRITEE LEVISH RosPHEG TS 45
13. CHARACTERS USED IN JOYSTICK ARROWSuiiiiiiiitieianinissnrnsesnsnsnenannens 45
14. FLOWCHART FOR JOYSTICK ARROWS.ciiiiiiiiinenrirenentnvnensnsnnencnnsnnernnns 46
18, KEYPAD A ivicoaninn cosan sisisin viaa o506 65an vinie ninimn niocs woais miacacn aivs wimoan st s ies aosbmn arsia siacn e sie:a's $1475 38 49
TE IKEVIRAD B dais v/05 604 imn viow miman memss aimrs mensmim wiws Riwans ks wscuimiaas S0n Wit svasi o 49 S008'S SiEa Sis ss:0'x Sbnis §oien 49
17. COLOR MEMORY MAP.......cuuiiniituiieneseansensiinssiosssssssssssssssonssssssnasssessonns 60

SECTION 2
GENERAL INTRODUCTION

Ohio Scientific’s Challenger 1P line is the most economical of the Ohio Scientific family of microcomputers. In
spite of its economical price, the C1P includes many deluxe features usually found only in more expensive systems.
The standard model Challenger 1P features BASIC-in-ROM and is an attractive fully packaged personal computer
ready to run as delivered. The basic Challenger 1P Series 2 includes a standard audio cassette interface and is capable
of sound, music and voice output via a built-in digital to analog converter. The basic system can be easily and eco-
nomically expanded to include up to 32K of RAM memory, dual mini-floppy drives, printer, modem, and color dis-
play.

The C1P Series 2 personal computer is specifically designed for the first-time personal computer user and for use
in educational environments. Its advanced features allow a wide range of home applications including, for example,
the following.

PERSONAL OR HOME COMPUTERS

Challenger 1P’s advanced character graphics, noise-free display, programmable keyboard, and extremely high
speed BASIC make it capable of spectacular video displays, cartoons, animated advertisements, and elaborate com-
puter games. Ohio Scientific offers an extensive library of one and two player video games very similar to conven-
tional arcade games as well as a standard complement of computer-type games. Ohio Scientific’s software library
also includes examples of cartoons, advertisements, and educational games which make extensive use of graphics
and programmable keyboard inputs. The computer’s fast program execution makes such applications a snap to pro-
gram.

PERSONAL FINANCES

Challenger 1P’s floating point decimal arithmetic capability in conjunction with its cassette storage abilities make
it practical for many forms of personal financial aid and analysis. Ohio Scientific’s cassette library includes a check
book balancing program, savings account program, and annuity and loan analysis programs. Budget planning aids
include home ownership cost analysis and expense accounting. A complete home budget system is available for use
on the C1P MF Series 2 disk system. Demonstration programs provide personal calendars, phone directory, address
book, and other personal services such as dietary analysis.

It should be pointed out that a mini-floppy disk is a practical necessity for some of the advanced applications men-
tioned above. These capabilities can, however, be effectively demonstrated on a cassette system. As in all applica-
tions, the ease of programming in BASIC, along with the convenient features of decimal arithmetic capability and
cassette storage, make user-generated applications in these areas easy to program.

SCIENTIFIC CALCULATIONS AND ADVANCED MATHEMATICAL
ANALYSIS

Challenger 1P’s BASIC has full advanced arithmetic capability, including trigonometric functions, logarithms,
exponentiation, and full scientific notation. These features are available in the immediate mode of operation as well
as the stored program mode. For instance, a user can quickly turn the computer on, type in an equation as a single
line, and press return to get an answer. The computer can double as an advanced scientific calculator with much
greater ease of use than any available calculator.

The program storage and alphanumeric capability of the Challenger 1P make it extremely valuable to engineers,
students, and educators for solving scientific, engineering and mathematical analysis problems. Ohio Scientific’s
cassette library includes several advanced mathematics oriented programs including a programmable calculator
simulator and a mathematical function library. The library also includes applications programs such as definite inte-
grals, statistical analysis, and other complex mathematical functions. In general the Challenger 1P will be hundreds
of times faster than the most powerful scientific calculators in “number-crunching’” applications.

3

EDUCATION

Challenger 1P series personal computers are extremely versatile in educational computing applications. Once the
user gets involved in the educational applications of these machines, he will quickly consider computers a necessity
in the educational process.

Young children from kindergarten to grade six are especially attracted to computers. As the child’s reading ability
develops they quickly master the elementary operations of the computer. It is not at all unusual for six year old chil-
dren to respond to mathematical problems on a personal computer. Children’s natural fascination with computers in
conjunction with the 1P’s cartoon-like interactive capability make the computer highly valuable in a modern educa-
tional environment. Programs which teach, tutor and drill students in virtually all areas of education can be easily
programmed on the Challenger 1P system. Ohio Scientific has a full library of several types of educational games
which can be used as an example in programming such applications. These programs range from a simple ‘‘Sesame
Street’” type arithmetic cartoon through mathematical drills, to word games such as ‘““Hangman’’ where the gallows,
noose and person are actually constructed graphically on the screen as the child attempts to guess the letters of a
word.

Another broad area of education is in teaching computer fundamentals. The Challenger 1P utilizes the most
popular upper level language, BASIC, in a very complete and concise implementation. With the Challenger 1P the
user can teach or learn BASIC in conjunction with any of the common available text books on the BASIC program-
ming language. The 1P series machines have full machine code accessibility including the machine code monitor so
that advanced students can enter, edit and execute machine code programs. A very fast and interactive assembler/
editor is available to run on Challenger 1P machines so that students can be introduced to the concepts of assembler
programming and editing.

ADVANCED APPLICATIONS

There are many other applications of the basic 1P machines that have not been mentioned here. The Challenger
1P MF system provides the user with the extra convenience of virtually instantaneous loading and storing of pro-
grams on mini-floppy disks. The addition of a mini-floppy disk drive to the Challenger 1P also provides convenient
construction and access of data files. Using the file capabilities of the C1P MF, an educator can develop an interac-
tive textbook with a quick access data base for any educational topic. In the home, the data file operation of the
mini-floppy makes the Challenger 1P a deluxe personal service computer giving the user easy access to phone num-
bers, personal calendar, addresses and other file-type information.

The Challenger 1P is available in an uncased version as the Superboard II. For a personal computer enthusiast on
a limited budget, the Superboard II offers nearly all of the features of the basic Challenger 1P at a fraction of the
cost. Setting up a Superboard is discussed in section three. Essentially all that is required, other than a little time, isa
Svolt @ 3 A (minimum) regulated power supply and an AC/DC voltmeter. As with the standard Challenger 1P, the
Superboard II includes both a standard audio cassette interface and a video display interface.

The remainder of this section gives an overview of the Challenger 1P system. Although the presentation is rea-
sonably nontechnical, it uses several terms which are part of the standard vocabulary of computers. The meanings
of many of these terms will be clear from the context in which they are used. Appendix 1 includes a computer glos-
sary which summarizes the meaning of most of these technical terms.

Like all small computers the Challenger 1P is made up of several modules. The most important of these, the
microprocessor, forms the heart or CPU (Central Processing Unit) of the C1P system. This microprocessor is an in-
tegrated circuit much like those used on digital watches and calculators. It performs all of the logical and arithmetic
operations required by the computer. The Challenger 1P system is based upon the 6502 MmICroprocessor.

[n addition to the microprocessor, any computer system requires memory for storage of data and programs and
input/output (I/0) devices to allow it to communicate with the user. Memory in a computer can be thought of as a
collection of post office boxes each having a specific address or box number. The addressing scheme used by the
Challenger 1P system is discussed in Appendix 2. Two basic types of memory are present in the C1P. They are re-
ferred to as ROM (for Read Only Memory) and RAM (for Random Access Memory). Each memory location (post
office box) can contain one piece (or BYTE) of data at any given time. The numeric value of the data at any memory
location is restricted to the range @ to 255. This restriction arises from the fact that each BYTE is eight BITS (binary
digits) in length. Appendix 2 gives a brief introduction to the binary and hexadecimal number systems.

When the microcomputer is operating, it can read (or PEEK) the contents of the memory location or it can write
(or POKE) a new value into a memory location. The contents of ROM memory is preprogrammed and unchangea-
ble by the user. Thus the user can read (or PEEK) the contents of ROM memory but cannot POKE a new value into
ROM memory. All models of the Challenger 1P line include BASIC, the most commonly used programming lan-

4

guage, in 8K (K is an abbreviation for kilo, for computers 1K = 1024 bytes) of ROM. RAM memory provides mod-
ifiable storage comprising the workspace, that is an area in memory where programs and data can be written in and
read out repeatedly. Generally, RAM “‘forgets™ (is erased) when the power is turned off.

The simplest means of communication between the user and the C1P is via the keyboard and the television or
video monitor. Sections three through six describe setting up and running your C1P using only keyboard input and
the video display. The conventional computer style 53-key keyboard supports both upper and lower case characters.
Each key has full automatic repeat. Holding down any key transmits first one character and then, after approximate-
ly a half second delay, a repeat factor of five characters per second. The keyboard of the Challenger 1P series is a
polled or software scanned keyboard. This allows the user to program individual keystrokes for specific functions.
This feature, which is described in detail in section twelve, is especially useful in real time video game applications.
The built-in video display interface is capable of generating 256 distinct characters including upper and lower case
letters as well as graphics and gaming character elements. The display format is 32 rows x 32 columns of 8 x 8 dot
or pixel characters, but due to the overscan present on normal television equipment you will actually see 24 rows x
24 columns. The Series 2 models in the Challenger 1P line feature a program selectable 12 row x 48 column
character display option. Section nine includes a detailed discussion of the character display capabilities of the
Challenger 1P system.

All models in the Challenger 1P line include a high reliability audio cassette interface allowing inexpensive
cassette storage and playback of programs. The procedures for cassette storage and playback of programs are de-
scribed in detail in sections seven and eleven.

All Challenger 1P cassette based computers come with a demonstration library on cassette (the C1P sampler)
which gives the user some insight into the capability of the computers. This demonstration cassette contains six pro-
grams which demonstrate various aspects of personal computing. The cassette includes an advanced video game
called ““Star Wars”® which runs in real time, a check book balancing program, a mathematics skill drill for children,
and an example of an educational program. Also included are ““Counter’” which is designed to be a child’s first intro-
duction to a computer, and a sample of a tutor program called ““Trig Tutor’” which shows the use of graphics in
tutoring complicated concepts. Ohio Scientific offers a full library of very economical cassette programs for the
Challenger 1P system.

The standard cassette based C1P Series 2 has 18K total RAM/ROM with 8K of workspace. Although the work-
space can be expanded to 32K, 8K is a practical upper limit for cassette based computers because of the load time for
programs from cassette into an 8K workspace. As the user upgrades to 20K of RAM, he will find it desirable to con-
vert his system to a mini-floppy disk based system. The C1P MF is a standard C1P with a 610 floppy disk and memo-
ry board, an extra power supply and a single mini-floppy. A cassette based C1P can be expanded to a C1P MF at a
total cost just slightly more than purchasing a CIP MF outright.

The C1P MF is supplied with 30K total RAM/ROM, a single 90K byte fast access mini-floppy and two disk
operating systems. PICO DOS allows the operation of ROM BASIC and cassette originated programs on diskette.
0S-65D is a powerful business and development oriented system with 9-digit BASIC by Microsoft. OS-65D also
supports an optional interactive Assembler/Editor, an optional text editor and both random access and sequential
data files. The use of these two operating systems on the Challenger 1P is discussed in section eleven. With the C1P
MF system, the user can load and run programs from diskette in a fraction of a second.

Ohio Scientific offers a wide range of educational, personal, entertainment and small business software on dis-
kette. Ohio Scientific also offers ““OS-MDMS,”’ a mini data base management system, for use on the C1P MF. This
data base management system allows the user to store collections of information on diskette for instant recall with-
out requiring any programming knowledge.

Generally, Ohio Scientific floppy diskette software is much less expensive than cassette software simply because
of the much lower cost of mass duplicating diskettes. For instance, a typical Ohio Scientific applications mini-floppy
will have ten programs on it and cost a fraction of what the individual programs would cost if purchased separately
on cassette. If a large software library is contemplated, the mini-floppy system will not only provide much faster pro-
gram LOAD and SAVE capabilities but will also be more cost effective than purchasing a large number of audio
cassettes.

The 630 1/0 Expander board is available for addition to either the C1P or C1P MF. This board provides the C1P
with the state-of-the-art in input/output capabilities rivaling the most expensive small computer systems available
today. This board allows easy interface with joysticks, remote keypads, AC remote control units, home security sys-
tem and more. It also substantially enhances the video display capabilities of the Series 2 models in the Challenger
1P line by allowing the display of up to 16 colors with any of the standard 256 graphics characters. The features of
the 630 1/0 Expander board are described in sections fifteen through nineteen.

SECTION 3
UNPACKING INSTRUCTIONS

This section details the procedures to be followed during the unpacking and assembly of a Challenger 1P system.
The instructions given here are intended to supplement the introductory manual supplied with each computer.

Your Challenger 1P system is shipped from the factory in a carton designed to provide maximum protection from
damage in transit. Nevertheless you should inspect the box carefully for signs of rough handling such as punctures
or crushed sides. If there is external evidence of damage, check the contents of the box carefully. (If possible with-
out removing the equipment.) If the contents have sustained damage notify the carrier immediately.

The system should be unpacked carefully and all packing material should be saved. These materials may be
needed later to transport or ship the system. If your system is diskette based, remove and save the dummy
cardboard diskette which protects the disk head from damage during shipment. This dummy diskette should be
saved to be used later if the system is shipped or transported.

Assembling a C1P system requires essentially the same precautions as hooking up a stereo system. Although the
Challenger 1P is a relatively rugged solid-state device, it may be damaged if you fail to observe power supply, ac-
cessory or safe operating requirements. As with all electronic equipment, it is recommended that you take time to
read all the instructions carefully before you turn on the computer. Once you are familiar with these procedures,
you can explore other areas of personal computing at your own pace.

Figure 1A is a diagram of the rear panel of the standard model of the Challenger 1P Series 2. This diagram will be
referred to repeatedly throughout sections three through fourteen. If your Challenger 1P Series 2 is equipped with
the 630 1/0 Expander board then the rear panel will appear as in Figure 1B. Sections fifteen through nineteen will
frequently refer to this diagram.

POWER SUPPLY-CHALLENGER 1P

The Challenger 1P requires a three-wire grounded 110V outlet. Although adapters are readily available which
allow plugging a three prong plug into a non-grounded two-wire outlet, such an adapter m-u-s-t n-o-t be used
unless you run a ground from the frame of the computer to a good ground such as a cold water pipe. This will insure
that the computer’s cabinet is thoroughly grounded and will protect both you and the computer from possible
damage or shock.

POWER SUPPLY-SUPERBOARD II

The Superboard II requires a 5 volt @ 3 A (minimum) regulated power supply with a +— 5% maximum ripple.
Reasonable care must be exercised when working with the Superboard II. Your work area should be clear of paper
clips or other conductive material which might accidentially contact the foil on the board. The board should not be
flexed or bent.

P . N PRINTER
O OHIO SCIENTIFIC CASSETTE IMODEM O OH— VIDEO
Sl o g oD ? O Q_ 0 DAC
CASSETTE IN
@ @ u U CASSETTE OUT
|
SWITCH jl
FUSE
AC LINE CORD
PRINTER
MODEM ROTARY SWITCH

Figure 1A: C1P Series |l Standard Rear Panel

OPEN JOYSTICKS
HOME SECURITY
16 PIN 10— ,— VIDEO

3 [
Ol v
O OHIO SCIENTIFIC } O TONE GEN.

W e ST O QO O DAC
O @ @ I l (3] O Ci\- AC CONTROL

|
SWITCH \—KEY PADS \ CASSETTE IN
FUSE MODEM CASSETTE OUT

AC LINE CORD PRINTER

Figure 1B: C1P Series |l Rear Panel With 63@ |I/0 Expander Board

Figure 2 illustrates the following sequence of steps involved in connecting a Superboard II to a power supply:

1. With the power supply unplugged, connect the RED and BLACK wires from the Superboard to the + and —
terminals of the power supply.

2. Attach an AC/DC multimeter to the terminal of the power supply and set the multimeter to a DC range
which will accurately measure 5 volts (a range of §-6 volts or @-10 volts should be acceptable.)

3. Briefly turn on the power supply. The “ON”’ light (a red LED) should glow. If it does not, then turn off the
power supply and check your connections to make sure they are not reversed.

4. Again turn on the power supply and measure the DC voltage. The reading should be between 4.8 and 5.2
volts. If the reading is less than 4.8 volts, then your power supply is probably inadequate. If the reading is
greater than 5.2 volts, then it may damage your board. Turn off the power supply —immediately.

5. Without changing the connections, set the multimeter to measure an AC voltage of approximately .5 volts
(you will probably need to use the lowest AC range on the meter).

6. Turn the power supply on and measure the AC voltage. This reading measures ripple and it must not exceed
§.2 volts AC.

When the power supply has been successfully attached to the Superboard II and tested, you are ready to proceed
to Section four which discusses the interface of the computer with a video display.

ilON!I
LED INDICATOR AC/DC
MULTIMETER TEST READINGS WITH
. SUPERBOARD Il CONNECTED
b AND POWER SUPPLY ON:
N
S DC MIN | MAX
[‘m VOLTS 48 5.2
AC
. RIPPLE | MAXIMUM 2v

SUPERBOARD II

5 VOLTS @ 3A.

DC POWER SUPPLY
HGHOUND" BLACK

FOIL

Figure 2: Superboard Il Power Supply Connections

8

SECTION 4
CONNECTING YOUR UNIT TO THE VIDEO DISPLAY

The first step in assembling your Challenger 1P computer system is the interface of your computer with a video
display. This section describes two possible methods of making this connection.

Figure 3 illustrates these two methods of attaching a video display to the Challenger 1P or Superboard II. The top
(or top left) RCA jack on the back of the C1P carries the video output signal from the C1P. This signal can be trans-
mitted to either the high impedance (HI-Z) input of a closed circuit television video monitor (such as the Model
AC-3 12" video monitor available from Ohio Scientific) or an RF modulator for display on a standard television.
Three cables are provided with the Challenger 1P Series 2 for the audio and video connections. The Superboard 11 is
supplied with a wiring harness which provides connections for video output and cassette input/output. This harness
should be attached as indicated in Figure 3.

With a closed circuit video monitor such as the Model AC-3, use the cable supplied with the C1P to connect the
video output jack on the back of the C1P directly to the video input jack on the back of the monitor. On monitors
other than the AC-3, if there is a high impedance-low impedance selector switch or two or more inputs follow the
monitor manufacturers instructions.

With a standard television, use the cable supplied with the C1P to connect the video output jack on the back of the
CIP to the “‘video in’* port of a video-to-RF interface modulator and follow the manufacturers instructions supplied
with the modulator.

VIDEO
" DISPLAY DEVICE

SUPERBOARD ||

VIDEO CABLE STANDARD TELEVISION

RF MODULATOR INPUT
TO ANTENNA TERMINALS

SOTO O uﬁnnnn‘

SUPERBOARD II

VIDEO MONITOR \/heq GABLE TO

TO HI-IMPEDANCE APPROPRIATE INPUT
VIDEO INPUT

CASSETTE
RECORDER
CABLES

CHALLENGER 1P
VIDEO CABLE

CASSETTE
JACKS

CHALLENGER
1P

Figure 3: Challenger 1P and Superboard |l Video Connections

9

SECTION 5
CONNECTING THE UNIT’S FLOPPIES OR CASSETTE
SYSTEM

All models of the Challenger 1P line of computers, including the Superboard II, include an audio cassette inter-
face. This interface allows a standard audio cassette recorder to be used for program storage and playback. Although
cassette 1/0 is not as convenient as disk I/0, it provides an inexpensive means of building a permanent library of
programs. Moreover, a large library of applications software is available on cassette from Ohio Scientific through
your local Ohio Scientific dealer.

Any good quality cassette tape recorder may be used for program storage and playback. Two cables are supplied
for connecting the CIP Series 2 to a cassette recorder. Each of these cables has a small microphone plug on one end
to plug into the cassette recorder and:an RCA phono plug on the other end to plug into the rear panel of the C1P.
The wiring harness supplied with the Superboard II includes two cables for connecting the Superboard II with a
cassette recorder. Figures 4 and 5 illustrate the connections necessary to attach a cassette recorder to a Challenger
1P and to a Superboard II. The selector switch on the rear panel of the C1P Series 2 must be set to the left (see figure
1A) for cassette 1/0. The placement of the microphone and audio output jacks on the cassette recorder may vary
with different brands.

The tape recorder should be plugged into an AC outlet, not run on batteries. The volume and tone controls of the
cassette recorder should be set at mid to high range.

The Challenger 1P MF is shipped from the factory with the mini-floppy disk drive already attached. Other than re-
moving the dummy cardboard diskette as described in section three, these systems are ready to operate once the
connection to a video display has been made. The CI1P disk upgrade kit contains all necessary documentation.

10

TELEVISION OR
VIDEO MONITOR

CIP SERIES II

5o
A

{.—

CASSETTE IN
CASSETTE OUT

= nnduannmun.

SUPERBOARD II TELEVISION OR
VIDEO MONITOR

+ wl “RECORDER OUTPUT CABLE
(MAY BE LABELED “EARPHONE" OR "SPEAKER."

TRANSMITS RECORDER AUDIO OUTPUT TO COMPUTER)
— -
g 5VDC
POWER
SUPPLY

“MIC" CABLE (TRANSMITS COMPUTER TO
RECORDER AUDIO INPUT.)

Figure 5: Superboard Il Cassette Recorder Connections

CASSETTE
RECORDER

11

SECTION 6
STARTING THE MACHINE

Once the power supply and video display connections have been made, the computer should be ready to run. If,
after you have connected everything and turned on the computer and monitor or television, you do not see a screen
filled with random graphics characters, then you should turn off the power and review all hook-up procedures and
check your connections carefully.

As has been indicated, the Challenger 1P has the programming language BASIC permanently stored in ROM
memory. The remainder of this section consists of an introduction to the use of ROM BASIC. If, at any time, the
computer or television/monitor does not respond as indicated, turn off the power to both and caref ully repeat each
of the preceding steps.

Figure 6 is a sketch of the keyboard on the Challenger 1P. Several keys or key combinations have special uses on
the Challenger 1P system. These special keys are summarized in this figire.

NOTE: THE SHIFT LOCK KEY MUST BE LATCHED IN THE “DOWN’’ POSI-
TION BEFORE THE MACHINE CAN BE RESET AND BASIC CAN BE
ENTERED.

Several of the instructions for bringing up BASIC contain words or letters which are enclosed by brackets ‘<"’ and

>", such as <BREAK>and <C>. The brackets indicate that a keyboard key labeled with the letter or word must be
pressed. Do not type in the word contained between the brackets letter-by-letter.
The following sequence of instructions will bring up BASIC:

1. Turn on the computer.

2. Turn on the television or monitor. After a short warm-up the screen should be filled with random characters.
The CI1P Series 2 will come up with the prompt message automatically.

3. Depress <BREAK> until the prompt or D/C/W/M? appears in the lower left corner of the screen. This will
take a few seconds on Series 2 models.

4. Press <C> (for Cold Start). The screen will scroll up one line and ask MEMORY SIZE? The responses <D>,
<W=> and <M> are discussed later in this section.

5. Press <RETURN>. The screen will scroll up another line and ask TERMINAL WIDTH?
6. Press <SRETURN>. The computer will reply:

XXXX BYTES FREE

OSI 6502 BASIC VERSION 1 REV. 3.2

COPYRIGHT 1977 BY MICROSOFT CO.

OK

The response <C> in step 4, above causes an initialization of BASIC-in-ROM to take place. When this initializa-
tion is completed, the text listed in step 6, above will be displayed. The line XXXX BYTES FREE informs the user
of the size of the workspace. The value of XXXX depends upon the memory size of the individual computer. A
typical 8K machine should give a response of 7423 BYTES FREE. The prompt OK displayed at the end of the above

sequence of instructions is a signal to the user that the computer is in the BASIC or immediate mode and is awaiting
input from the user.

12

11.

12.
I3

<>—Brackets—Instruct user to press key whose label is contained between the brackets. DO NOT type in
word between brackets.

SHIFT LOCK —latching Key—Must be in the locked (depressed) position before BASIC may be entered; or
capital letters, numerals, etc., may be entered.

. <BREAK>—Places computer in the “‘RESET"’ state any time after system is powered up. Hold for several

seconds.

. C—May be pressed after <BREAK>. Initializes computer and clears system RAM.

. W—May be pressed after <BREAK> excepr when computer is first powered up (C must be used). Initializes

computer, DOES NOT clear system RAM. Any programs in RAM are preserved.

. M—may be pressed after <BREAK>. Initializes computer, clears system RAM. Computer enters machine

language monitor. See 65V Primer for detailed information.

<SPACE>—provides a space when pressed.
<RETURN>—Must be entered after a line is typed. Typed material is then stored in program memory space.

. <SHIFT O>—Press <SHIFT> first, add <O>—erases from memory, last character typed.
10.

<SHIFT P>—Press <SHIET> first, add <P>—erases from memory, current line being typed. Provides a ‘@
carriage return and line feed.

<CONTROL C>—Press <CONTROL: first, add <C>. Program listing or execution is interrupted, “BREAK
IN LINE XXX is printed.

<SHIFT N>—Press <SHIFT> then <N>, yields A—used for exponential notation.
RUBOUT —is not used.

w o P RETURN
?gg[f’g‘;! BREAK
SHIFT (o] N M SHIFT
SPACE

Figure 6: OSI| Polled Keyboard

One of the automatic steps in the initialization procedure is the clearing of a region of memory designated as the
workspace. This region is used by the computer to store programs written in BASIC.

Programs can be entered into the workspace in several different ways. The user can enter a BASIC program di-
rectly through the keyboard or from an external storage device such as a cassette tape. The method of entering a
program into the workspace is strictly a matter of convenience. Once a program has been entered into the workspace
by any means, the user can list the program, make corrections or additions, run the program or store the program on
an external storage device if desired.

A program entered into the workspace remains there uniil it is removed. The command NEW can be used to
clear the workspace, or erase the program, and allow the entry of a new program. If the power to the computer is
turned off, then the program is lost. If the user depresses the <BREAK> key for a few seconds then the prompt or
D/C/W/M? will be displayed on the screen again. If the user depresses <W> (for warm start) then the computer re-
enters BASIC and the contents of workspace are retained. On the other hand, if the user depresses <C>then a cold
start is performed and the workspace is cleared.

Section seven will describe how to LOAD and RUN “‘canned” programs (programs previously written and stored
on an external storage device). Section eight will describe the entry of programs directly through the keyboard. Sec-
tion eleven will describe the techniques involved in the storage of programs on cassette or diskette.

There are two possible responses in step 4) above which we have not discussed yet. These are <D> and <M>. The
response <D> is used with mini-floppy disk based versions of the Challenger 1P, such as the C1P MF, to select the
disk. Section eleven will discuss this option in detail. The option <M> allows the user to enter the Monitor. This
feature allows the user to examine and modify the contents of memory. This capability is primarily used in machine
code applications. The 65V Primer, available through your OSI dealer, is an introduction to machine code program-
ming using the Monitor.

SECTION 7
RUNNING A “CANNED” PROGRAM

Ohio Scientific maintains an extensive library of software on both cassette and diskette to meet a wide variety of
needs. With these packaged programs a user can make extensive use of the capabilities of the Challenger 1P without
the need to know how to program. This section describes how to utilize these “canned’’ or ‘‘ready-to-run’’ pro-
grams.

LOADING CASSETTE PROGRAMS

The standard cassette based Challenger 1P and the Superboard II are supplied with a C1P Sampler cassette, which
contains a selection of programs illustrating various capabilities of the Challenger 1P system. The following instruc-
tions describe how to load and run programs stored on cassette.

With the cassete recorder attached to the C1P as described in section five and the selector switch on the rear panel
set to the left position follow the instructions given in section six to enter BASIC-in-ROM. The BASIC prompt OK
should be displayed in the lower left corner of the screen. Place the cassette containing the program to be loaded in
the recorder and go through the following sequence of instructions:

1. Rewind the cassette until the tape leader is visible.

2. Type in NEW <RETURN>. This erases any program which might currently be stored in the workspace.
3. Type LOAD but do not press <RETURN> yet.
4,

Turn on the tape recorder to play the tape. (Remember to set the volume and tone controls at the mid to high
ranges.) When the tape (dark brown) begins to wind onto the right-handed spool press <SRETURN>,

Within a few moments, the program will begin listing on the screen. Loading of a program usually takes from 1 to
5 minutes depending upon the length of the program being loaded.

5. When the program loading is complete, the following lines will appear on the screen
OK
7S’ ERROR
OK
and the cassette recorder can be turned off.
6. To complete the loading of the program press <SPACE> followed by <RETURN>.

The program is now stored in the workspace and can be executed by entering the command RUN or inspected by
entering the command LIST.

The above instructions assume that the program to be loaded is the first program on the cassette tape. When more
than one program is stored on a cassette, the tape should be advanced to a point just preceding the program to be
loaded rather than being rewound. With the Sampler cassette, load the first program and do not rewind the cassette
recorder. Once you have run the first program, the tape will be in place to LOAD and RUN the next program on the
cassette. The following is a brief description of the programs on the Sampler cassette.

SIDE ONE:

Basic Math— An educational quiz program that gives addition, subtraction, multiplication and divi-
sion problems.

Checking Account—This program helps you balance your checkbook. Just give the computer the
initial balance and check amounts and let the computer do the work.

15

Trig Tutor—This program explains and diagrams three trigonometric functions—sine, cosine and
tangent. The computer then tests your comprehension with a quiz.

Star Wars— An arcade-type computer game. You move the crosshairs around the screen trying to
draw a bead on the target ship.

SIDE TWO:

Counter—This is a combination of an educational game and a cartoon for children learning to count
from one to ten.

Presidents Quiz—This program asks you 20 historical questions about various presidents.

If your cassette recorder has a counter, it is recommended that you reset the counter at the beginning of the tape
and make note of the start of each new program. The use of a cassette recorder for saving programs will be discussed
in Section 11.

LOADING DISK PROGRAMS

The Challenger 1P MF Series 2 is a mini-floppy disk based version of the CIP. A large number of applications
diskettes are available from Ohio Scientific through your dealer. Diskettes for the Challenger 1P should be labeled
with the designation PICO DOS or 08-65D CIP. Many of these diskettes display a ““menu’” when describing the
programs available on the diskette when they are loaded into the computer. In order to use these diskettes, first
make sure there are no diskettes in the drive, then turn on the power to the computer, the video monitor and the
floppy disk unit (in that order). Then depress the <BREAK> key until the prompt D/C/W/M? is displayed in the
lower left corner of the screen. Again, verify that the Shift Lock key is down. Insert the diskette (label side up, label
toward you) into the mini-floppy drive (the “A” drive if you have a dual disk drive system), carefully close the
drive door, and press <D> (for disk).

If the disk inserted is labeled PICO DQOS, then the following text will appear on the screen when <D> is depressed

PICO DOS V1.1
MEMORY SIZE? 8955
TERMINAL WIDTH?

For now just enter a <SRETURN> in response to the query TERMINAL WIDTH? Each PICO DOS disk provides
storage for eight programs. These programs can be loaded into workspace by typing the command

LOAD n <RETURN>

where n is the number (between 1 and 8) of the program you wish to load. The ROM BASIC cassette commands,
LOAD and SAVE, still work without the numeric extension. When the program is loaded the prompt OK will be
displayed on the screen. The program can then be executed by entering the command RUN or inspected by entering
the command LIST.

If the disk inserted is labeled OS-65D C1P a menu will be displayed on the screen. For example, when the stand-
ard OS-65D development disk is loaded, the following text is displayed on the screen

BASIC EXECUTIVE FOR
0S-65D V3.N
MO,DAY,YR RELEASE
FUNCTIONS AVAILABLE:
CHANGE-ALTER WORK-SPACE LIMITS
DIR-PRINTS DIRECTORY
UNLOCK-UNLOCKS SYSTEM FOR END USER MODIFICATIONS
FUNCTION?

This menu offers us three choices. We can enter the response CHANGE and the computer will automatically
LOAD and RUN a program by the name of CHANGE. If we enter the response DIR, then the computer will LOAD

16

and RUN a program named DIR. If we respond UNLOCK, then the system is unlocked. This allows the user to

assume control of the system with the capability to enter new programs and list programs in the workspace. The re-

sponse UNLOCK places the system in the BASIC immediate mode with the display of the prompt OK.

! For now, we will focus on the program DIR. This program prints a directory of the files present on the diskette. If
we respond DIR to the query FUNCTION? then the computer will ask us

LIST ON LINEPRINTER INSTEAD OF DEVICE # 2 ?
Responding NO will cause the following output to appear on the screen.
0S-65D VERSION 3. N

—DIRECTORY —
FILE NAME TRACK RANGE
0S-65D3 @-12
BEXEC* 14-14
CHANGE 15-16
CREATE 17-19
DELETE 20-20
DIR 21-21
DIRSRT 22-22
RANLST 23-24
RENAME 25-25
SECDIR 26-26
SEQLST 27-28
TRACE 29-29
ZERO 3p-31
ASAMPL 32-32

50 ENTRIES FREE OUT OF 64

Some of the contents of this directory listing will be discussed in detail in section eleven. The files listed contain
utility programs written in BASIC. Note that we were introduced to two of these programs, CHANGE and DIR, in
the menu. In addition to listing the names of the programs on the diskette, the directory tells where they are loated
on the diskette. For example, the program DIR is located on track 21 and is one track long while CHANGE is a 2
track program starting on track 15. (Each diskette has 40 tracks, numbered @ through 39.)

Any of the BASIC programs on this disk can be run by responding UNLOCK to the query FUNCTION? and then
entering the command “‘RUN followed by either the name of the program or the number of the first track where it is
stored. For example, either of the commands RUN*“DIR™ or RUN*21" would run the program DIR. The closing
quotes are optional, ie, RUN‘‘DIR.

Most of the applications diskettes do not offer the user the option of unlocking the system. On these diskettes
programs are run by entering the appropriate response when the menu is displayed.

The use of mini-floppy diskettes for storing programs will be discussed in detail in section eleven.

SECTION 8
RUNNING BASIC

There are a large number of publications available which give detailed descriptions of the commands and func-
tions of BASIC. While the material presented in this manual can in no way duplicate such excellent manuals as Basic
and the Personal Computer by Dwyer and Critchfield or the Ohio Scientific BASIC Reference Manual, it at least
gives some insight into the fundamentals of the BASIC language.

In order to enter and run the programs listed in this section the computer should be placed in the BASIC mode
with a cold start as described in section six. Recall that the Shift Lock key must be latched in the down position
before the machine can be reset and BASIC can be entered. The BASIC prompt OK will signify that the computer is
prepared for input.

A program is a series of instructions to the computer. These instructions are stored within the memory of the
computer and describe a procedure for accomplishing a specific task. Every statement in a BASIC program begins
with a line number which the computer uses to sequence the statements in the program. These line numbers make
it easy to modify or EDIT a program. For example, a statement can be deleted or erased by typing in its line number
following immediately by <RETURN>. To insert a statement just assign it a line number which will place it in the
desired location in the program. Any statement can be corrected by retyping the entire line, including the line num-
ber. An optional editor is available on disk for the C1P which simplifies these editing procedures.

There are two standard techniques for correcting mistakes that occur as you enter a BASIC program.

1. Asindicated in FIGURE 6 in section 6, typing a <SHIFT O> key combination deletes the last character typed.
(The <SHIFT O> notation denotes pressing the <SHIFT> and the <O> simultaneously.) Multiple deletions
can be made by repeating the <SHIFT O> combination. On the Challenger 1P the character is not actually re-
moved from the input line, but an underscore character is printed for each character deleted.

2. As indicated in FIGURE 6, typing a <SHIFT P> key combination erases the line currently being typed. A
“@" character is printed at the end of the line eliminated.

The Challenger 1P is ready to accept input once the computer replies OK as indicated above. Before entering any
program, it is good programming practice to first type in NEW <RETURN-=>. Do this and then enter the following
program exactly as it appears, including all punctuation.

PROGRAM ONE

The following programming example demonstrates three types of statements in the BASIC language. Statement
19 is a REM statement which is used to include remarks in a BASIC program. Any text included after the keyword
REM is considered to be a remark and does not affect the execution of the program. Statements 2()-12f) are PRINT
statements. A PRINT statement causes output to be displayed on the next line of the screen. Lines 20, 3@, 5 and 6(
just cause a blank line to appear on the screen. In lines 4@, 70-10@ and 120 the actual text enclosed within quotation
marks is displayed on the screen. The meaning of line 130 is obvious, it ends the program. Each of the following
BASIC statements are followed by <RETURN:=. This notation symbolizes to the user that the <RETURN=> key is to
be pressed. The <RETURN:= will not be included in future program listings but must be included at the end of each
line entered into the computer. The statements in this program are numbered by multiples of 1@. This type of num-
bering routine simplifies the addition of statements at a later time.

19 REM-PROGRAM #1 <RETURN>
20 PRINT <RETURN>
30 PRINT <RETURN>

40 PRINT “*** HELLO ***" <RETURN>

18

5@ PRINT <RETURN>
6@ PRINT <RETURN>
TOPRINT '======================="<RETURN>
80 PRINT “THIS PROGRAM USES THE"” <RETURN>
90 PRINT “BASIC PRINT STATEMENT"” <RETURN>
100 PRINT “TO DISPLAY TEXT ON” <RETURN>
110 PRINT “THE SCREEN" <RETURN>
120 PRINT '=======================" <RETURN>

130 END <RETURN:>

The command LIST can be used to instruct the computer to print out the program on the screen as it is currently
stored within the computer’s memory.

After you have listed your program and made any necessary corrections, the command RUN will instruct the
computer to execute your program. If the computer detects any errors in your program it will respond with a
message such as

2S” ERROR IN 10

which would indicate an error in statement number 1.

Appendix 7 contains a complete list of error codes. After correcting the indicated error, you can RUN the pro-
gram again. The Ohio Scientific Basic Reference Manual also contains a list of the BASIC error displays. The pro-
gram will remain in the workspace until you enter the command NEW or turn off the computer. Once the program is
correctly entered and executing properly, you should experiment with the program by adding, deleting, or modify-
ing statements to gain experience with the capabilities of the system. For example you might make the computer say
hello to you by including your name in quotes in one of the PRINT statements.

PROGRAM TWO

One of the key features of a programming language such as BASIC is the use of variables. Through the use of
variables, such as X, Y, S and A in the following sample program, the computer assigns names to certain locations
or addresses in memory. The contents of these memory locations can then be easily modified by a variety of BASIC
statements. The following simple BASIC program illustrates the use of the INPUT statement (statement 9¢) and
the assignment statement (statements 109 and 110).

10 REM—PROGRAM #2
20 REM—PROGRAM READS
30 REM—TWO NUMBERS
40 REM—CALLED X AND Y
50 REM—THEN PRINTS THE
60 REM—NUMBERS AND
70 REM—THEIR AVERAGE
80 PRINT “ENTER X AND Y”
99 INPUT X, Y

100 LET S = X+Y

120 PRINT “X = "; X

19

130 PRINT “Y =", Y
140 PRINT “AVERAGE = "; A
150 END

Statements 10-7@ in this program are remarks (REM statements) and can be deleted without affecting the opera-
tion at the discretion of the user. It is generally considered good programming practice to include brief comments
such as this to document the purpose of a program.

When this program is run, statement 8@ will cause the message

ENTER X AND Y

to be displayed on the screen. Statement 99 will then cause a ? to be printed on the next line. This serves as a prompt
which indicates that the computer is expecting input from the keyboard. Technically, statement 80 is unnecessary
and could be deleted, but it is included to remind you what the computer expects you to enter. The computer has set
aside locations named X and Y in memory to receive the values you enter (see below). You should type in two
values separated by a comma, say for example 8, 19 and press <SRETURN>. The first value is deposited in the loca-
tion named X and the second value is deposited in the location named Y.

The next statement executed is statement 100. The expression on the right hand side of the equal sign, X+, is
evaluated using the current values stored in X and Y and the result is stored in or assigned to, the location named S.
Statement 110 then calculates S/2, wich means S divided by 2, and stores the result in the location named A. With
the values above, S will contain 27 and A contain 13.5. Statements 12(-14 illustrate a slightly different form of the
PRINT that was used in Program One. Statement 120 will cause the output

X =8

to appear on the screen. As pointed out in Program One, anything enclosed within quotation marks is displayed on
the screen. On the other hand, when a variable name, such as X, is listed in a PRINT statement and is not enclosed
in quotes, the computer prints the contents of the location X and not the letter X.

The following remarks describe several special features of BASIC on the Challenger 1P.

1. The keyword LET is optional in an assignment statement. For example, statement 19@ could be replaced by
100 S =X+Y
2. Statements 80 and 99 could be combined into the single statement
90 INPUT “ENTER X AND Y"”; X, Y
3. Statements 99, 118 and 140 could be replaced by
140 PRINT “AVERAGE = "; (X+Y)/2
An expression appearing in a PRINT statement is evaluated and the result is printed.
4. The symbol *“?”’ can be used as a short-hand abbreviation for PRINT. Thus statement 120 can be replaced by
120 ? “X ="; X

5. More than one BASIC statement can be positioned on one line with the use of the *‘:”’ symbol between the
separate statements.

PROGRAM THREE

Normally each statement in a BASIC program is executed in sequential order. The BASIC language provides sev-
eral ways of modifying the normal order of execution. If the statement

145 GO TO 80

is added to Program Two, then we have constructed a logical loop within our program. The program will now com-
pute the averages of pairs of numbers indefinitely. Statement 145 provides an unconditional branch. Each time the
execution of the program reaches statement 145, control will be looped back to statement 8@. This new version of
Program Two has one major problem —there is no convenient way to terminate execution. Because of the possibility
of forming endless loops of this type in a BASIC program, the Challenger 1P provides two methods of interrupting a
program (short of pulling the plug.) First, any program can be terminated by holding the <BREAK> key down for

20

several seconds. This resets the computer and displays the D/C/W/M? prompt on the screen. Another way to inter-
rupt the execution of a BASIC program is to press <CONTROL C>. When this is entered, the computer terminates
gxecution and prints the message

BREAK IN LINE XXXX

The user can then list and modify his program as desired.
Rather than force the user to resort to entering <BREAK> or <CONTROL C-> to terminate the execution of our
new version of Program Two, we can replace statement 145 by

145 |F A<>p THEN GO TO 80

This statement checks the condition A< >} (A not equal to zero). As long as the average is not zero, control is trans-
ferred back to statement 80 and another pair of numbers is processed. The user can now terminate the execution of
the program by entering any two numbers X and Y whose average is . This type of a conditional branch is an ex-
tremely useful feature of BASIC.

Refer to Ohio Scientific’s BASIC Reference Manual and BASIC and The Personal Computer (available from your
local OSI dealer) or any other BASIC language text to continue developing your programming skills.

21

SECTION 9
GRAPHICS

The Challenger 1P features the same set of 256 graphics characters offered on the more expensive C4P and C8P
series of computers. A complete list of these characters may be found in Appendix 9. The normal display mode for
the C1Pis 24 rows X 24 columns in black and white. The Series 2 provides an alternate 12 row x 48 column text dis-
play mode. With the 630 1/0 expander board the C1P Series 2 user can display any of the 256 graphics characters in
up to 16 colors on a standard color television set or color monitor. The color option is discussed in section nineteen
where several special features of the 630 1/0 expander board are described in detail.

For display purposes the screen is divided into a grid of rectangular blocks. Each of these blocks is associated with
a specific address in memory. The display within each cell of the grid is determined by the numeric content of the
memory location associated with the cell.

Figures 7 and 8 illustrate the video memory maps for both the standard 24 x 24 video display and the alternate 12
x 48 video display on the Challenger 1P. These memory maps indicate the memory address of each cell on the
screen. In the standard 24 % 24 display mode, for example, the cell in the upper left hand corner of the screen has
address 53381 while the cell in the lower right hand corner of the screen has address 54141. The memory maps actu-
ally give the address of each cell in two different number systems—decimal and hexadecimal. The use of the hex-
adecimal number system for addressing on the Challenger 1P is discussed in Appendix 2. Although your display
may have 1 or 2 additional visible lines at the top and/or bottom of the screen due to variations between video moni-
tors, it is recommended that graphic displays be restricted to the regions of the screen prescribed by the video maps.

HEX DEC. DEC. HEX
$DP85 53381 53404 D@OC
DYAS 53413 ' 53436 D@EC
DOC5 53445 53468 D@DC
DPE5S 53477 53500 D@FC
D105 53509 53532 D11C
D125 53541 53564 D13C
D145 53573 53596 D15C
D165 53505 53628 D17C
D185 53637 53660 D19C
D1A5 53669 53692 D1BC
D1C5 53791 53724 D1DC
D1E5 53733 53756 DI1FC
D2¢5 53765 53788 D21C
D225 53797 53820 D23C
D245 53829 ' 53852 D25C
D265 53861 53884 D27C
D285 53893 53916 D29C
D2A5 53925 53948 D2BC
D2C5 53957 53080 D2DC
D2E5 53989 54012 D2FC
D395 54021 54044 D31C
D325 54053 54p76 D33C
D345 54085 54108 D35C
D365 54117 5414p D37C

Figure 7: Video Memory Map (24 x 24 Format)

22

HEX DEC. DEC. HEX
DIBB 53387 53434 DOBA

DOCB 53451 53498 D@FA

DI9B 53515 53562 D13A

D14B 53579 53626 D17A

D18B 53643 53690 D1BA

DICB 53707 53754 D1FA

D2B 53771 53818 D23A

D24B 53835 53882 D27A

D288 58399 53946 D2BA

D2CB 53963 54010 D2FA

DB 54027 54974 D33A

D348 54091 54138 DaTA

Figure 8: Video Memory Map (12 x 48 Format)

Appendix 9 shows the diagrams and numeric codes for each of the 256 graphics characters available on the
Challenger 1P. The Challenger 1P uses the BASIC statement POKE to display a character at a specified location
on the screen.

The BASIC statement POKE is an extremely useful statement. It can be used to store any numeric value (in
the range @-255) at any address in RAM memory. THE POKE STATEMENT MUST BE USED WITH
CAUTION. The ability it gives the user to modify the contents of memory can lead to disastrous effects if
POKEs are made to random areas of memory. Since the memory associated with the screen is RAM memory,
the POKE statement allows us to place the numeric value of any figure we wish to display on the screen in the
memory location associated with the cell in which we wish to display the figure. The syntax of the POKE
statement is as follows

POKE address, value

Follow the cold start procedure described in section six to enter BASIC-in-ROM. When the BASIC prompt OK
appears, hold down the <RETURN: key until the screen is cleared and then directly enter the command POKE
53776, 239. A small airplane will be displayed in approximately the center of the screen.

Now enter the following sample program.

1@ REM—GRAPHICS DEMO
20 REM—CLEAR THE SCREEN
30 FOR J=1TO 30
40 PRINT
50 NEXT J
60 REM—MOVE FIGURE ACROSS
70 REM—THE SCREEN
80 FOR I=@ TO 25
99 POKE 53549+, 32
100 POKE 53541+1, 237
110 NEXT |
120 END

Study this program carefully and try to predict what will happen when yuu run it. Statements 3@-58 form a FOR-
NEXT loop which will cause the PRINT statement to be executed 3@ times. Each time the PRINT statement is ex-
ecuted the display on the screen will scroll up one line, thus statements 3@-5@ will clear the screen. Statements 8f-
119 are another FOR-NEXT loop. Statements 99 and 10@ within this loop will be executed 26 times for values of I
ranging from @ to 25. The first time through the loop I is @ and the two statements are interpreted as

90 POKE 53540, 32 [note: 53540+ |=53540+ @ =5354{]
and
100 POKE 53541, 237 [note: 53541+ 1=53541+(0=53541]

Referring to the video memory map and the list of graphics characters, we see that statement 99 places the value 32
in memory location 53540. Memory location 53549 does not correspond to a cell on the screen (actually it corres-
ponds to a position which is not visible because of overscan on the video monitor). Thus statement 9@ has no visible
effect the first time through the loop. On the other hand, statement 10@ places the value 237 in memory location
53541 which corresponds to the first cell in the sixth row of the screen. The visible effect of statement 10@) is the ap-
pearance of a small airplane (character number 237) at the left edge of the screen about one quarter of the way down
the screen. The loop is now repeated, this time with I=1. This time statements 99 and 190 are interpreted as

90 POKE 53541, 32 [note: 53540+ |=53540+1=53541]

and
100 POKE 52542, 237 [note: 53541+1=53541+1=53542]

This time the effect of statement 9 is to place a blank in the first cell in the sixth row (thereby erasing the airplane
placed there the first time through the loop) and statement 100 then redraws the airplane in the second cell of the
sixth row. As the loop is repeated for subsequent values of I ranging from 2 to 25 the airplane is moved cell-by-cell
across the screen. Due to the speed of the microprocessor, the program executes so quickly that it is difficult, if not
impossible, to distinguish each step as the plane moves across the screen. This difficulty can be remedied by adding
the following lines of code to your program (remember that BASIC will use the line numbers to automatically insert
these statements in their appropriate location within the program).

25 INPUT “ENTER DELAY"”; D
104 REM—GO TO DELAY
105 REM—SUBROUTINE
196 GOSUB 200
200 FORT=1TOD
210 NEXT T
220 RETURN

A complete listing of the modified version of the program is now
10 REM—GRAPHICS DEMO
20 REM—CLEAR THE SCREEN

25 INPUT “ENTER DELAY"; D
30 FOR J=1TO 30

40 PRINT

50 NEXT J

60 REM—MOVE FIGURES ACROSS
70 REM—THE SCREEN

80 FOR I=0 TO 25

99 POKE 53540+ 1, 32

10@ POKE 53541+, 237
104 REM—GO TO DELAY
105 REM—SUBROUTINE
106 GOSUB 200

11@ NEXT |

120 END

200 FORT=1TOD

210 NEXT T

220 RETURN

Statement 106 causes a jump to be made to statement 20@. Statements 20 and 210 just make the computer count to
whatever value you enter for D before it returns to statement 110 and repeats the FOR-NEXT loop for the next
value of I. The addition of these statements allows the user to slow down the execution of the program sufficiently to
follow the progress of the plane across the screen. You should run the program for values of D ranging from 1 to
1000 to observe the effect on the speed of execution.

This program illustrates the general concepts involved in displaying graphics characters on the screen. An impor-
tant fact to remember in moving a figure on the screen is that the figure must be erased from its old location as well
as redrawn at its new location. Many of the graphics characters are designed to be used in pairs or groups to produce
larger figures. Displaying characters 9 and 1@ in adjacent horizontal cells displays a space ship. Characters 179-182
can be combined to display ships. Characters 229-232 depict the four playing card suits—hearts, clubs, spades and

diamonds.
—34 —-33 —-32 =31 —30
A
—1 - > +1
Y
30 31 32 33 34

Figure 9: FOR-NEXT Loop Directional Increments

Figure 9, shown above, shows the values to increment a screen location to produce movement in the associated
direction. The twelve directions shown in Figure 9 are demonstrated in the following program.

1@ FOR SC=1 TO 25: PRINT: NEXT
20 X=53711: Y=161: POKEX, Y
30 FORR=1TO 12: READ D
40 FORI=1TO19: POKEX+D, Y: X=X+D: NEXT
45 X=53711
\ . SPNEXTR
60 DATA —32, —31, —30,1, 34, 33
70 DATA 32, 31, 30, —1, —34, —33
80 GOTO8P: REM PREVENT SCROLL
90 REM PRESS <CTRL C>TO END

In section twelve the graphics capabilities of the Challenger 1P will be further illustrated by a program which
allows the user to control the movement of a figure on the screen by depressing various keys on the keyboard.

The Series 2 models of the Challenger 1P offer an alternate 12 row X 48 column display mode. This display mode
provides 12 lines of text (with intervening blank lines) of 48 characters each. The 12 x 48 mode is primarily
intended for the display of text (the intervening blank lines are not compatible with most graphics displays).

In order to use the 12 x 48 display mode, the standard software which controls the video display must be modi-
fied. This is accomplished by running a special program which swaps a new video driver for the old. This program
named SWAP is supplied in an autorun form on cassette with the standard C1P and on diskette with the CIP MF.
The screen size option is controlled by bit @ of the control register at 55296 (address D80 in hexadecimal). For ex-
ample, once the program SWAP has been run

POKE 55296, @ selects the 24 x 24 display mode
POKE 55296, 1 selects the 12 x 48 display mode.

(Appendix 5 gives a complete listing of the values to poke at 55296 to obtain various combinations of options such
as screen width and DAC sound.)

On standard cassette versions of the Challenger 1P, memory location 251 is used in place of 55296 to control
screen width, DAC sound and the color option, if the program SWAP has been run. Thus, on the cassette based ver-
sion of the C1P, the screen size is selected as follows

POKE 251, @ selects the 24 x 24 display mode
POKE 251, 1 selects the 12 x 48 display mode.

26

SECTION 10
SOUND

All Series 2 models of the Challenger 1P have a built-in 8 bit digital to analog converter (DAC) which is capable
of generating sound output. The signal from the DAC is available at the DAC output port on the rear panel of the
CIP (see Figure 1). The signal from this output port can be fed into the auxiliary input of an audio amplifier or the
audio input jack on the rear of a video monitor. Software is available from Ohio Scientific through your local dealer
for the Challenger 1P MF Series 2 which allows the user to enter, play and store songs with multiple parts.

The programming techniques required to generate sound through the DAC are relatively sophisticated. The out-
put at the DAC output port must be updated at least 50@-1009 times per second even for the simplest tones. A high
level language such as BASIC does not provide sufficiently fast execution speed to be suitable for such applications.
Routines to generate musical tones must be written in assembler or machine code (the ‘“native language’’ of the
microprocessor) to attain the execution speed necessary.

Memory location 55296 (address D80 in hexadecimal) is reserved as a control register on the Challenger 1P.
Just as the user can use this register to choose between the 24 x 24 and the 12 x 48 display mode, he can also enable
(turn on) or disable (1nute) the output from the DAC with different POKEs to the location 55296. For the purposes
of this section we will restrict our attention to the following two possibilities:

POKE 55296, @ mutes the DAC output
POKE 55296, 16 turns on the DAC output

These two POKEs both select the standard 24 x 24 display mode. (Appendix 5 gives a complete listing of the values
to POKE at 55296 to obtain various combinations of options such as DAC sound and screen format.)

Random output from the DAC can be heard quite easily by the following method. Turn on the computer and doa
cold start. When the OK prompt is displayed, type in

POKE 55296, 16

(with no line number) and depress one or two keys in the top row of the keyboard. If the DAC is hooked up cor-
rectly and the volume is turned up, you should hear various high pitch tones. These tones are being generated since
the DAC and the keyboard share the same I/0 (Input/Output) port at 57988 (address DF@0 in hexadecimal). These
tones can be turned off by entering

POKE 55296, 9

which will mute the output to the DAC.
Programming to produce sound output with the DAC generally involves the following simple scheme:

1. Turn on the DAC.
2. Send a constantly varying sequence of values to the DAC output port.
3. Turn off the DAC.

The following sample program alternately stores the values () and 255 at address 57(88 (the DAC output port). In
the beginning the alternating values generate a square wave with a relatively low frequency of approximately 75
cycles per second. As execution proceeds, the frequency increases until it reaches a relatively high frequency of ap-
proximately 12009 cycles per second. The audible effect is similar to a slide whistle sliding from a low note to a high
note. This routine is written for ROM BASIC.

1@ REM—TURN ON DAC
20 POKE 55296, 16
30 REM—READ MACHINE CODE

27

40 REM—ROUTINE AND STORE
5@ REM—BEGINNING AT 3972
60 FOR |I=1TO 38
70 READ V
80 POKE 3@71+1, V
9p NEXT
10@ REM—READ MACHINE CODE
119 REM—SUBROUTINE AND
120 REM—STORE BEGINNING AT
130 REM—3328
140 FOR 1I=1TO 12
15@ READ V
16@ POKE 3327+, V
170 NEXT
189 REM—STORE STARTING
199 REM—HEX ADDRESS
20@% REM—OF MACHINE CODE
210 REM—ROUTINE FOR USR (X)
220 POKE 11,0 : POKE 12,12
23¢ REM—JUMP TO MACHINE CODE
240 Y=USR(X)
250 REM—TURN OFF DAC
260 POKE 55296, ¢
270 END
280 DATA 169, 8, 141, 12, 13
200 DATA 169, 0, 141, 0, 223
30@ DATA 32, 313, 169, 255
31@ DATA 141, @, 223, 32, 9, 13
320 DATA 206, 12, 13, 208, 235
330 DATA 206, 13, 13,173, 13, 13
340 DATA 141, 14, 13, 208, 219
350 DATA 96
36@ DATA 174, 14, 13, 160, 4
370 DATA 136, 208, 253, 202
380 DATA 2018, 248, 96

The data statements at the end of this BASIC program comprise a sequence of instructions for the microprocessor
written in the “‘native language” of the 6502 microprocessor. Notice that we are able to turn the DAC on and off
within the BASIC program, but we have to resort to machine code to obtain the speed of execution necessary to
generate sound. The USR (X) function referenced in statement 240 provides a convenient means of interfacing ma-
chine code routines with BASIC programs. This feature is discussed in Ohio Scientific’s BASIC Reference Manual.
For a detailed description of Assembler Programming on the 6502 see the MOS Programming Manual by MOS

Technology, Inc. and Ohio Scientific Assembler/Editor and Extended Monitor Manual.

The 63 1/O Expander Board provides an alternative means of generating sound with a programmable tone
generator. This feature is discussed in section nineteen where the several features of the 63@ I/O Expander Board
are discussed in detail.

SECTION 11
EXTERNAL STORAGE OF PROGRAMS

All models of the Challenger 1P line of computers, including the Superboard 11, include an audio cassette inter-
face. This interface allows a standard audio cassette récorder to be used for program storage and playback. Although
cassette I/0 is not as convenient as disk 1/0, it provides an inexpensive means of building a permanent library of
programs. Moreover, a large library of applications software is available on cassette from Ohio Scientific through
your local Ohio Scientific dealer.

CASSETTE STORAGE

In section seven the user learned how to attach a cassette recorder to the Challenger 1P and was introduced to the
procedure for loading and running prerecorded or ‘“‘canned” programs. This section describes the use of both
cassettes and diskettes for saving programs.

The following instructions describe how to record a program onto a cassette tape. These instructions can be used
to record any BASIC program contained in the workspace whether the program was entered line-by-line through the
keyboard or was itself initially loaded from cassette. Recall that the selector switch on the rear panel of the C1P must
be set to the left (cassette) postion in order to do SAVEs and LOADs with cassettes.

These instructions can, for example, be used to create a backup of the Sampler tape provided with your cassette
based Challenger 1P by loading each program from the Sampler tape and then recording it onto a blank tape.

It is recommended that you use new or thoroughly erased cassettes of good quality for recording programs to
avoid noise and other problems associated with old cassettes.

When your program is in the form you wish to save, place a cassette in the recorder and rewind the cassette so that
the tape leader is visible on the right-hand spool (or to the point at which you wish to store the program if you are
storing more than one program on a cassette). The following sequence of instructons will then store the program on
the cassette.

1. Type SAVE <RETURN>,

2. Type NULL8 <RETURN>.

3. Type LIST but do not press <RETURN> yet.
4

. Now turn on the tape recorder in the RECORD mode. When the tape (dark brown) begins to wind onto the
right-hand spool, wait 5 seconds and press <RETURN>.

The program will begin listing on the screen and to the cassette port. When the last line of the program is listed,
wait a few seconds and turn off the recorder. To reset the computer to keyboard input

5. Type in LOAD <RETURN>.
6. Press <SPACE> followed by <RETURN>.

Each cassette should be labeled to identify the contents. If you wish to protect the contents from accidental
erasure, break out the appropriate “‘record protect’ tab from the rear edge of the cassette. The sample programs in
Section Nine and Ten can be used to practice saving and loading programs.

Programs stored on cassette using the above procedure can be loaded using the technique described in section
seven. This procedure can be modified slightly to store programs on cassette in an autorun format. These programs
automatically run themselves once they are loaded from cassette. The procedure described above must be modified
in the following manner to make an autorun cassette:

1. The first line of the program to be saved must be
POKE 515, 0 ‘

29

2. Follow the SAVE prodecure described above only to step 5. Between steps 4 and 5 type in RUN before you
turn off the tape recorder, then type LOAD <RETURN>.

Although a cassette recorder provides an inexpensive means of storing programs, the LOAD and SAVE proce-
dures are slow, and keeping track of the location of multiple programs on a cassette can be cumbersome. A mini-
floppy disk unit provides a much faster and more convenient method of saving and loading files. The Challenger 1P
MF Series 2 is a mini-floppy disk based version of the CI1P. In addition to all the features of the standard C1P, it in-
corporates a single mini-floppy disk drive and 20K of RAM. The C1P MF Series 2 comes complete with two disk
operating systems—PICO DOS and OS-65D. The extra RAM memory is necessary to use these disk operating sys-
tems since these operating systems are themselves stored in RAM each time the disk is loaded.

The PICO DOS or disk operating system uses ROM BASIC. It allows the use of cassette originated programs on
diskettes. PICO DOS occupies approximately 4K of RAM and operates with a fixed 8K workspace. Thus PICO DOS
can actually be utilized on a C1P system with a 610 expander board and 12K of RAM. This is an intermediate growth
step between the CIP Series 2 and the C1P MF Series 2.

The 0S-65D operating system is a more powerful disk operating system. This disk operating system occupies
somewhat over 12K of RAM and uses 9-digit BASIC by Microsoft rather than the built-in ROM BASIC. With 20K
of RAM, the C1P MF Series 2 has an 8K workspace under the OS-65D disk operating system. With added memory
the workspace under OS-65D can be expanded to 20K (or a total of 32K RAM).

Mini-floppy diskettes and disk drives are precision pieces of hardware and require reasonable care to insure con-
tinued satisfactory performance. Appendix 8 includes some guidelines on the handling of floppy diskettes ad disk
drives.

THE PICO DISK OPERATING SYSTEM

The PICO DOS system provides an extension of the BASIC-in-ROM LOAD and SAVE commands to permit files
to be saved on mini-floppy diskettes as well as on cassettes. This system allows for the storage of 8 programs on a
single mini-floppy diskette.

In order to use the PICO disk operating system, first turn on the power to the computer, video monitor and floppy
disk unit and depress <BREAK> until the prompt “D/C/W/M?" appears in the lower left corner of the screen. In-
sert a PICO DOS diskette, label side up, into the mini-floppy drive (the ““A’* drive if you have a dual disk drive sys-
tem) and press <D>. The PICO disk operating system will respond with the following message

PICO DOS V1. 1
MEMORY SIZE? 8955
TERMINAL WIDTH?

The memory size is automatically set at 8955 by the PICO disk operating system. Unless the terminal width needs
to be changed from the default value of 132 to meet the needs of a specific output device, just enter a <RETURN>in
response to the query TERMINAL WIDTH?

The new commands available under the PICO disk operating system are

LOAD n
and
SAVE n

where n is program number from 1 to 8. These supplement the normal cassette LOAD and SAVE commands,
which still function as before.

To save a program, simply enter it into the computer either through the keyboard, from cassette or perhaps from
another PICO DOS diskette and type SAVE n where n is any number between 1 and 8. For example, the command
SAVE 5 will save the contents of workspace on the fifth file on the disk. This will erase any program previously
stored there. This program can be recalled at a later time with the command LOAD 3. Once the program is loaded
into workspace from a diskette, it can be listed, modified and executed in exactly the same manner as programs
entered through the keyboard or from cassette.

30

THE 0S-65D DISK OPERATING SYSTEM

The 0S-65D disk operating system is a convenient to use disk operating system which fully supports Microsoft’s
9-Digit Extended BASIC, an optional 6502 resident Assember/Editor, an optional 6502 Extended Machine Code
Monitor and various 1/0 devices. It supports writing programs in BASIC, storing programs on disk by name or track
number, recalling programs and reading and writing sequential and random access data files in BASIC. The system
is also well suited to utilize machine code subroutines in conjunction with BASIC programs.

In order to use the OS-65D disk operating system, first turn on the power to the computer, video monitor and
floppy disk unit and press <BREAK> until the prompt D/C/W/M? appears in the lower left corner of the screen,
check that the Shift Lock key is down. Insert an OS-65D diskette into the mini-floppy drive (the “A” drive if you
have a dual disk drive system), remember to check the shift lock key and press <D>. When <D>is depressed the OS-
65D disk operating system is loaded into memory and a BASIC program called BEXEC* is automatically loaded and
executed. The program BEXEC* on the standard OS-65D development disk causes the following text to be dis-
plaved on the screen

BASIC EXECUTIVE FOR
0S-65D V3. N
MO, DAY, YR RELEASE
FUNCTIONS AVAILABLE:
CHANGE—ALTER WORK-SPACE LIMITS
DIR—PRINTS DIRECTORY
UNLOCK—UNLOCK SYSTEM FOR END USER MODIFICATIONS
FUNCTION?

(On some special applications diskettes the program BEXEC* has been modified. When these diskettes are loaded
the response may differ from that listed above. With these disks the user should just respond as directed by the dis-
played message.)

If the user responds CHANGE or DIR (for a directory of the diskette), then these programs are loaded and ex-
ecuted. When these programs finish executing the OK prompt is displayed, but the system is in a LOCKED mode
and will not allow the user to enter new BASIC programs.

If the user responds UNLOCK to the query FUNCTION? then the system is placed in the BASIC immediate
mode with display of the prompt OK. This prompt serves the same function as the OK in BASIC-in-ROM. It indi-
cates that the system is prepared to respond to the standard BASIC commands, such as RUN. Unlocking the system
does not remove the program BEXEC* from the workspace. If the command LIST is entered after the response
UNLOCK, the program BEXEC* will be listed.

If the user depresses <CONTROL S> while a program is being listed or while a program is running, the listing or
the execution will be interrupted until <CONTROL Q> is depressed. Before beginning to enter a new program the
user should type NEW to clear the workspace.

The commands NEW and LIST are not acknowledged when BASIC is in the LOCKED mode. In order to
UNLOCK the system, the user must run BEXEC* and respond UNLOCK to the query FUNCTION?. The program
BEXEC* can be run either by entering the command RUN*“BEXEC*" or by pressing <BREAK> and reloading or
rebooting the OS-65D disk operating system. If the user enters the response UNLOCK (followed as usual by
<RETURN?:), then the system is unlocked. This allows the user to assume control of the system with the capability
to erase old programs, enter new programs and list programs in the workspace.

BASIC programs can be entered through the keyboard in essentially the same manner as when BASIC-in-ROM
was used. One slight difference is that when the <SHIFT O>is used as a backspace the character to be deleted is actu-
ally erased and the cursor moved one space to the left.

Before discussing the techniques for storing programs on diskette under the OS-65D disk operating system it will
be helpful to describe some of the utility programs supplied with each 0S-65D development disk. Each 08-65D de-
velopment disk is shipped with either a black or white write protect tape attached. This tape is located near the upper
right hand corner of the disk and covers a notch in the diskette cover. With this tape attached, it is possible to read
from the disk but impossible to modify, or write to, the disk. This tape provides protection against inadvertent
writes to the disk. The tape must be removed before anything can be stored on this disk. In particular, the utility
programs CREATE and DELETE will not execute on a write protected disk (as indicated by an ERR #4 message).

31

Each OS-65D development disk contains a BASIC program named DIR. This program prints a director of the
named files present on the diskette. Please note that programs stored without names will not be listed. This program
can be run once the system has been unlocked by entering the command RUN*‘DIR.”’ This program can also be run
by responding DIR to the query FUNCTION? when the diskette is first loaded. A third way to run this program is to
enter RUN*21.”” When the program DIR is run it first asks

LIST ON LINEPRINTER INSTEAD OF DEVICE # 2 ?

Depending upon your response the following output will appear either on the screen or on a printer (if one is at-
tached and you respond YES).

0S-65D VERSION 3. N

—DIRECTORY —
FILE NAME TRACK RANGE
0S-65D3 @P-12
BEXEC* 14-14
CHANGE 15-16
CREATE 17-19
DELETE 20-20
DIR 21-21
DIRSRT 22-22
RANLST 23-24
RENAME 25-25
SECDIR 26-26
SEQLST 27-28
TRACE 29-29
ZERO 30-31
ASAMPL 32-32
5@ ENTRIES FREE OUT OF 64

OK

Each mini-floppy diskette has 40 tracks, numbered $-39. As the above listing shows, tracks @-12 are reserved for
the OS-65D disk operating system. Note that the program BEXEC* is located on track 14. With the exception of the
file ASAMPL which contains a sample assembler routine, each of the other files contains a utility program written in
BASIC. These programs can be used without any knowledge of how they are implemented, but the interested user
may find it useful to study them as sample programs since they demonstrate a wide variety of programming and file
accessing techniques.

The directory listed above indicates that tracks 33-39 are currently not in use. These tracks can be used to store
programs written by the user.

The 0S-65D disk operating system allows the user to store programs either by track number or by name. The
command

DISK!"“PUT 33"
will store the program in workspace on the disk starting at track 33. This method of storing programs must be used
with caution since there are no safeguards to prevent overwriting of existing files, as there are with the named file
procedures.
Before a BASIC program can be stored by name, it is necessary to create a file to receive it. This will require an
estimation of how many tracks your program will use at 2K bytes per track (see page 35). The utility program
CREATE provides a means of adding new named files to the directory. To create a file, type

RUN“CREATE"

(You must be in the BASIC immediate mode as indicated by the prompt OK in order to enter this command.) This
command will cause the BASIC utility program CREATE to be loaded and executed. The program output and the
expected responses are shown below. Any unacceptable response will result in termination of the program or a re-
peat of the request for input.

FILE CREATION UTILITY
PASSWORD?

32

Unless you modify the code for the program CREATE, the password for this and all other OSI utility programs is
just the word PASS. After you enter this password (and press <RETURN>) the program continues with an explana-
tion of its operation:

CREATES AN ENTRY IN DIRECTORY FOR A NEW
FILE AND INITIALIZES THE TRACKS THAT THE
NEW FILE WILL RESIDE ON. THE TRACKS WILL
CONTAIN NULLS WITH A RETURN AT THE END
OF THE TRACK.

FILE NAME?

Enter a one to six character file name that is not a duplicate of an existing file on the disk. The file name must begin
with a letter. The program will then respond.

FIRST TRACK OF FILE?

Enter the number of the first track the file is to reside on. Note that a named file always begins on a track boundary
and resides on a whole number of tracks. The next response is

NUMBER OF TRACKS IN FILE?

Enter the number of tracks on which the file is to reside. You will have to estimate how large your program will be.
Each track of the disk will hold 2K of material. The program will perform a check to verify that the tracks you have
specified are not currently occupied by any other named files in the directory. If the tracks you have specified are
available, the program continues with

8 PAGES PER TRACK. IS THIS OK?

Fach track on a mini-floppy has a maximum capacity of 8 pages with each page capable of storing 256 BYTES. When
a file is being created to store a BASIC program the response to this question should be YES since this will make
maximum use of the space available on the diskette.

The file will now be created and its name and track location will be entered into the directory. When the CREATE
utility program is finished, the prompt OK will again appear on the screen.

The 0S-65D approach to files requires that the user know how large his file needs to be when it is created. To be
safe, the user can simply specify a disk file size as large or slightly larger than the available RAM for BASIC pro-
grams. For example, with a Challenger 1P MF with 20K of RAM, slightly less than 8K is available for programs.
Since each track can store 2K BYTES (8 pages at 256 BYTES per page), a four track file will hold any BASIC pro-
gram that can be entered into the machine.

The user should always maintain a scratch file, usually with the name SCRTCH, which is at least as large as the
memory size of the computer. This would mean a 4-track (8K) SCRTCH file for a computer with 20K of RAM. This
file can serve as temporary storage in several situations. If, for example, the user types in a program and then re-
members that he did not create a file for it, then he can simply store the program temporarily on the file SCRTCH,
run CREATE to create a new file to hold the program, reload the program from SCRTCH and then store it under its
proper name.

It is clear from looking at the directory listing that the utility programs occupy a major portion of the disk and
leave little room for the storage of user generated programs. A common solution to this problem is to maintain mul-
tiple copies of the 0S-65D disk. At least one of these should be left intact with all the utilities present. On the other
disks, the utility program DELETE can be used to remove the majority of the utility programs. A reasonable choice
might be to delete all the utilities except DIR, CREATE and DELETE since these are the most commonly used
utility programs. If the other utility programs are needed, they can be loaded from the OS-65D disk containing
them.

The DELETE utility program can be run by typing

RUN"DELETE

The program output and the kind of input you may enter in response are shown below. Any unacceptable response
will result in termination of the program or a repeat of the request for input.

DELETE UTILITY

REMOVES AN ENTRY FROM THE DIRECTORY
PASSWORD? (Enter PASS)
FILE NAME?

Enter the name of the file to be deleted and its name will be removed from the directory. The file is still physically
present on the disk and can be run by track number. The DELETE utility merely removes its name from the direc-
tory.

The other utility programs present on the OS-65D disk will not be discussed in this manual. Their operation is
completely described in the OS-65D USER’S MANUAL.

The 0S-65D disk operating system contains its own command interpreter. This interpreter handles commands for
such tasks as initializing diskettes, loading and saving files, loading the 9-Digit Extended Basic interpreter and load-
ing the Assembler and Extended Monitor, if your disk has these. A summary of the commands in the OS-65D disk
operating system is provided in Appendix 6.

For the purpose of loading and saving BASIC programs, the commands of primary interest are the two commands

LOAD FILNAM Loads named source file
FILNAM into memory

and
PUT FILNAM Saves source file in memory on
the named disk file FILNAM

These commands, as well as the other commands in the 0S-65D disk operating system, are not recognized in this
form when in the BASIC immediate mode. To enter these commands when in the BASIC immediate mode, they
must be prefixed by DISK!"” This prefix identifies the commands as part of the OS-65D disk operating system. The
command interpreter only uses the first two characters in each 0S-65D disk operating system command, so each
command can be abbreviated to two letters.

Suppose now that you have created a file named PROG1 and have entered a BASIC program into the workspace
and wish to save it in the file PROGI1. The command

DISK!“PUT PROG1" or DISK!"PU PROG1”

will cause the source file to be stored in the file PROG1 on the diskette. There are four common user errors that can
arise in connection with this command.

1. The diskette is write protected (ERR #4 message)

2. The disk drive is not turned on (no message on screen).

3. No file has been created to receive the program or the file name is entered incorrectly (EER #C message).
4. The program is too long to fit in the file (ERR #D message).

Appendix 7 contains a list of error codes which are associated with these and other disk 1/0 errors. If the disk drive

is not turned on or the drive door is not shut, the system will just “hang’ until the drive is ready and then an error

condition will normally be issued. Remember to avoid turning the disk drive on or off when it contains a disk.
Once a BASIC program has been stored on a file, it can be loaded later from BASIC with the command

DISK!I"LOAD PROG1 or DISK!“LO PROG1

This command will cause the program to be loaded into the workspace. It can then be modified or executed with the
standard BASIC commands (e.g. LIST, RUN, etc). 0S-65D allows the user to combine the LOAD and RUN com-
mand into one command

RUN*PROG1

This feature has already been illustrated in our discussion of the utility programs.

As was pointed out earlier, the OS-65D disk operating system requires the user to specify the size of a file at the
time it is created. If the user follows the preceding recommendations and creates a scratch file SCRTCH of sufficient
size to store a program of maximum size, then the disk 1/0 errors #C (can’t find that name in the directory) and #D
(read/write attempted past the end of named file) can usually be easily handled by temporarily placing the program

34

in the scratch file. Obviously, it is desirable to store a program in as small a disk file as possible to conserve disk
space. The following discussion describes a simple procedure which allows the user to determine the number of
tracks needed to store a program.

The 0S-65D disk operating system allows the user to leave the BASIC immediate mode by entering the command
EXIT. When this command is issued, two lines appear on the screen. These two lines will have the following form

PN TRACK

A’
In the first line N is an integer which indicates the minimum number of tracks required to store the current contents
of workspace on disk. If the user has just entered a BASIC program or is in the process of entering a BASIC pro-
gram, this informs him how many tracks would be required to store the program in its present form. The second
line, the A*, is the OS-65D disk operating system kernel prompter. It indicates that the user is no longer in the BA-
SIC immediate mode, but rather is in the kernel of the disk operating system. Any of the 0S-65D disk operating sys-
tem commands can be issued when in the kernel (without the DISK!”” prefix). If the user has entered the kernel
from BASIC, the command RETURN BASIC or RE BA will return the user to BASIC and leave the contents of the
workspace unchanged. The command BASIC or BA will also return the user to BASIC but the contents of work-
space are lost. Thus, the user who is entering a BASIC program, can get an estimate of its size at any time by enter-
ing the command EXIT, noting the track requirements and returning with the command RETURN BASIC or
simply RE BA.

Programs can be stored on cassette under OS-65D in the following manner:

1. Type DISK!”’IO, #3 <RETURN>

2. Type NULL8 <RETURN>

3. Now turn on the tape recorder in the RECORD mode.

4. When the tape (dark brown) begins to wind onto the right-hand spool, type LIST <RETURN>
5. When the LIST is completed, turn off the tape recorder.

Programs can be read into the workspace from cassette under 0S-65D using the following technique. The tape
must be positioned immediately preceding the program to be loaded or extraneous noise will disrupt the load. More
than one attempt may be necessary before the program will be successfully loaded.

1. Type DISK!”IO @1 but do not type <RETURN>

2. Start the cassette recorder and immediately press <RETURN>.

If the procedure is successful the program will begin listing on the screen. If not repeat the procedure.

This section has provided an introduction to the OS-65D disk operating system. The system includes a large num-
ber of features which we do not have room to properly cover here. The OS-65D USER’S MANUAL covers all of
these features in detail and is required reading for the serious user who wishes to take full advantage of the capabil-
ities of the system.

SECTION 12
ADVANCED FEATURES-LOWER CASE, KEYBOARD
PROGRAMMABILITY

LOWER CASE

The Ohio Scientific Challenger 1P is capable of generating lower case characters as well as numerous graphics
characters. Under normal operation, the shift lock key is in the depressed or locked condition. It must be in this
position for normal systems level software to operate, this is because all BASIC commands must be given in capital
letters. With the Shift Lock key down, depressing any alphabetic, numeric or punctuation key on the keyboard will
cause the keyboard to generate upper case alphabetics and numerics. By depressing the left or right shift key in con-
junction with another key, punctuation and special control codes will be generated. For example, depressing the
<SHIFT> key and the <5> key together generates a per cent sign (%). Depressing the <SHIFT> key and the <P> key
together generates a commercial at sign (@) which is recognized in BASIC as being the line delete code (compare
figure 6 in section six).

The shift lock key can be released for certain special applications. Specifically, to generate lower case characters as
part of literal strings such as ““This is a string’’ in BASIC and for use in conjunction with word processing, the
keyboard will act very differently when the <SHIFT> key is not in the locked position. With the shift lock key up,
only standard alphabetic keys will generate expected results. Specifically, depressing any alphabetic key will cause
the generation of a lower case alphabetic character. In this mode of operation, the left shift key has a different func-
tion than the right shift key. Depressing the left shift key in conjunction with alphabetic or numeric keys generates
upper case alphabetics and numerics. The right shift key in conjunction with other keys generates upper case
punctuation. For example, depressing the 5 key without either shift key generates ‘‘garbage.”” Depressing the 5 key
in conjunction with the left shift key generates the numeral 5. Depressing the 5 key in conjunction with the right
shift key generates the per cent (%) key. As stated in numerous other places, the shift lock key should be kept in a
depressed or locked mode except when lower case characters are explicifly desired.

KEYBOARD PROGRAMMABILITY

The Challenger 1P keyboard has a built-in auto repeat feature. By depressing any key and holding it down, first
that character will be generated once and then after approximately one-half second, the character will be repeated at
a rapid rate.

The internal design of the polled keyboard on the Challenger 1P views the keyboard as an array of 8 rows and 8
columns (see Figure 10). Normally, when a program is not executing, a polling routine constantly scans each of the
eight rows in succession to determine the column of any depressed key. If a key closure is detected, the polling
routine supplies the ASCII code corresponding to the face of the key depressed. During the execution of a program
this polling routine is disabled and replaced by a second routine which monitors the <CONTROL> and <C> keys. If
these keys are simultaneously depressed, then execution of the program is terminated (see Figure 6 in section six).

In many applications it is useful to program keys for special purposes such as controlling the movement of figures
on the screen. In order to program special key functions, the CONTROL-C polling routine must be temporarily dis-
abled. The method for accomplishing this depends upon whether the program will be run with BASIC-in-ROM or 9-

36

127 191 223 239 247 251 253 254
COLUMN ADDRESSES ‘

C7 ©C ©c5 ©C4 €3 o©c2 C1 cp [
|
ONE-
& PLAYER
- GAME KEYS ‘
5 |
[
™
SR
(7))
w
o 5 '
@
a
S |
Ly
o™ I
|
el
o™
@ TWO- |
9 PLAYER |
GAME KEYS
<t
wn
(o]

! !
= KEY SWITCH

NOTES: 1. Standard 53-key layout except:
“HERE IS” deleted, “RUB OUT"” at “HERE IS” location,
“SHIFT LOCK” at “RUB QUT” location. .
2. “LEFT SHIFT” and “RIGHT SHIFT” separately decoded. ‘

Figure 10: Switch Matrix—CIP Polled Keyboard.

Digit Extended BASIC (with 08-65D). The following table summarizes the commands needed to enable (turn on)
and disable (turn off) the CONTROL-C routine in each of these contexts. |

BASIC-in-ROM
POKE 53@,1 — turns CONTROL-C off
POKE 53@, @ — turns CONTROL-C on
9-Digit Extended BASIC
POKE 2p73, 96 — turns CONTROL-C off
POKE 2973, 173 — turns CONTROL-C on

All keyboard polling is accomplished through the I/0 port for the polled keyboard. This port is located at memory
location 57088 (address DF@@ in hexadecimal). The technique of polling the keyboard consists of two steps (a
POKE and a PEEK):

1. address a row
This is accomplished by the statement
POKE 57(¢88, row address
For example, the statement POKE 57088, 247 addresses R3 (see Fig. 9). |

2. determine key closures within the column.

37

If, after addressing a specific row, we enter the statement

K = PEEK(57088)

then the value of K will summarize the column addresses corresponding to key closures within that row. The
value of K is the logical AND of the column addresses in which keys are depressed.

For two integers N1 and N2 the value of N1 AND N2 can be determined in the following manner. Express both
N1 and N2 in binary notation. If necessary add leading zeros to the binary representation of one or the other num-
bers so that both numbers are the same length. The binary representation of N1 AND N2 hasa 1 in any position that
both N1 and N2 have a 1 and has @’s elsewhere.

Example
147 (decimal) = 10@10@11 (binary)
89 (decimal) = @10110@1 (binary)

Thus the binary representation of 147 AND 89 = @@@100@1. Since #@@10@@1 (binary) = 17 (decimal), the value of
147 AND 89 is 17. For more information on logical operations refer to the OSI BASIC Reference Manual.
For example, suppose a program contains the following two consecutive statements

10@ POKE 57088, 247
110 K = PEEK(57088)

K = 127 indicates that <S> is depressed. If K = 191 then <D is depressed. If K = 63 then both <S> and <D> are
depressed (since 63 is the logical AND of 127 and 191).

If K is expressed as an 8 bit binary number (with leading zeros if necessary), then zeros occur in exactly those col-
umns in which keys are depressed. In the above example, the binary representation of 63 is @@11111. There are
zeros in the first two columns-the columns in which the <S> and the <D> are located.

The following sample program illustrates these keyboard polling techniques in controlling movement on the
screen.,

PROBLEM: Write a BASIC program which will allow the user to control the movement of a small tank by
depressing specified keys. Depressing'one of the keys <1>, <2>, <3> and <4> should cause the tank to move to the
right, up, left and down respectively. Depressing <S> should terminate the program.

SOLUTION: There are eight different tank figures available in the graphics character set (characters 248-255)
printed in Appendix 8. Since we shall not allow diagonal movement in this program, we will only use characters 248,
25@, 252 and 254. The following is a list of the most important variables used in the following program.

T determines the tank figure displayed

L specifies the location of the tank on the screen

D1 contains the distance of the tank from the right hand edge of the
screen

D2 contains the distance of the tank from the top of the screen

D3 contains the distance of the tank from the left hand edge of the
screen

D4 contains the distance of the tank from the bottom of the screen

K3 summarizes the key closures in row R3

K7 summarizes the key closures in row R7

A number of comments have been included to the right of the following listing to explain the logic of the program.
These comments should not be included when you type the program,

10 REM—TANK MOVER Replace line 3@ by
20 REM—DISABLE CNTL-C POKE 2073, 96 for
30 POKE 530, 1 9-Digit BASIC

40 REM—CLEAR THE SCREEN

50 FOR I=1TO 3@

60 PRINT

70 NEXT

80 REM—SELECT TANK 252

38

100
110
120
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
299

319

320

330

340
1000
1010
1020
1030
1040
1050
10609
1070
1080
1090
1100
1110
2000
2019
2020
2030
2049
2050
2060
2070
2080
2090
2100
2110
3000
3010
3020
3030
3040
3050
3060

T = 252

REM—LOCATE AT CENTER
REM—OF SCREEN

L = 53776

REM—SET DISTANCES
REM—TO EDGES
D1=12;: D2=12
D3=11:D4=11
REM—DISPLAY TANK
POKEL, T
REM—POLL R3

POKE 57088, 247

K3 = PEEK(57088)
REM—STOP ON <S>

IF K3=127 then 9009
REM—POLL R7

POKE 57988, 127

K7 = PEEK(57(088)
REM—CHECK DIRECTION
IF K7=127 THEN 1000
IF K7=191 THEN 2000
IF K7=223 THEN 3000
IF K7=239 THEN 4000
REM—GO TRY AGAIN
GOTO 209

REM—1 PRESSED
REM—SELECT TANK

T = 250

REM—ERASE TANK
POKE L, 32
REM-UPDATE L

IF D1>@ THEN L=L+1
REM—UPDATE D3 AND D1
IF D1>@ THEN D3=D3+1
IF D1>@ THEN D1=D1—1
REM—REDRAW TANK
GOTO 180

REM—2 PRESSED
REM—SELECT TANK

T = 248

REM—ERASE TANK
POKE L, 32
REM—UPDATE L

IF D2>@ THEN L=L—-32
REM—UPDATE D4 AND D2
IF D2>@ THEN D4=D4+1
IF D2>9 THEN D2=D2-1
REM—REDRAW TANK
GOTO 180

REM—3 PRESSED
REM—SELECT TANK

T = 254

REM—ERASE TANK
POKE L, 32
REM—UPDATE L

IF D3>0 THEN L=L—1

Cell 53776 is 12 cells
from right and top,
11 cells from left and
bottom.

No match was found.
Key <1> was pressed.

Tank 250 points right.

Increment L by 1 to move
to right if not at edge.
Increment D3 by 1 and
decrement D1 by 1 if

not at edge.

Key<2> was pressed.
Tank 248 points up.
Decrement L by 32 to move
up if not at edge.
Increment D4 by 1 and
decrement D2 by 1 if
not at edge.

Key <3> was pressed.
Tank 254 points left.

Decrement L by 1 to move
left if not at edge.

3070
3080
3090
3100
3100
4000
4010
4020
4030
4040
4050
4060
4070
4080
4990
4100
4110
el 1110
op1Q
9020
9030

REM—UPDATE D1 AND D3
IF D3>p THEN D1=D1+1
IF D3>@ THEN D3=D3-1
REM—REDRAW TANK
GOTO 180

REM—4 PRESSED
REM—SELECT TANK

T =252

REM—ERASE TANK
POKE L, 32
REM—UPDATE L

IF D4>@ THEN L=L+32
REM—UPDATE D2 and D4
IF D4>@ THEN D2=D2+1
IF D4>@ THEN D4=D4—1
REM—REDRAW TANK
GOTO 180

REM—TIME TO QUIT
REM—RESTORE CNTL-C
POKE 530, @

END

Increment D1 by 1 and
decrement D3 by 1 if
not at edge.

Key <4> was pressed.

Tank 252 points down.

Increment L by 32 to move
down if not at edge.
Increment D2 by 1 and
decrement D4 by 1 if

not at edge.

Replace line 902 by
POKE 2073, 173 for
9-Digit BASIC.

To facilitate entering this program you might skip all lines beginning with REM, since these lines do not affect the
operation of the program. It is still good programming practice to use REM’s throughout your programs to docu-

ment them.

Once you have successfully entered the preceding program and feel that you understand the logic, there are sev-
eral variations you might attempt.

1. Eliminate the variables D3 and D4. D1 and D2 can be used to check all four edges.

2. Modify the program to allow diagonal moves.

3. Convert the program to a two player game with each player controlling a different figure and one of the play-
ers trying to catch the other.

This program gives an introduction to the potential uses of the polled keyboard and graphics display capabilities of
the Challenger 1P. Very elaborate arcade games can be written to run on the Challenger 1P. Many such games are
available from Ohio Scientific on cassette and diskette for use on your C1P.

40

SECTION 13
PRINTER COMMUNICATIONS

The Challenger 1P Series 2 computer is provided with a switch selectable audio cassette, 3@ baud modem and
printer interface. Figure 1 in section three gives two views of the rear panel of the Challenger 1P.

In order to interface a serial printer with the Challenger 1P, the printer cable should be connected to the printer
output port located on the rear panel of the C1P and the selector switch should be rotated to the center (printer)
position. The method used for output to the printer depends upon whether BASIC-in-ROM or 9-Digit Extended
BASIC under OS-65D is used.

BASIC-IN-ROM—PRINTER USE

When BASIC-in-ROM is being used with the Challenger 1P, output to the printer is handled in the same manner
as output to cassette. If the command SAVE is entered, then all subsequent output which would normally appear on
the screen is routed to both the screen and the printer. Set the rotary switch to printer, see page 7. Output will con-
tinue to be routed to the printer as well as the screen until the user enters the following sequence of commands:

LOAD <RETURN>
<SPACE> <RETURN>

These two commands terminate output to the printer in the same way that they terminate output to the cassette re-
corder when the switch is set for cassette input/output.
For example, a program in the workspace can be listed on the printer by the following series of commands:

SAVE
LIST
LOAD
<SPACE>

As usual, each of these commands should be followed by <RETURN>. The program will begin listing after the com-
mand LIST is entered. The command LOAD should be entered after the LISTING is complete. If the printer is not
on line or is connected incorrectly (or if the selector switch is turned to printer when no printer is connected) then
the computer will stall when the command LIST is entered until the problem is corrected, the switch is reset or
<BREAK>is depressed. The results of any PRINT statements are displayed on both the screen and the printer. Note
the printer output is 3¢@ baud, like the cassette output.

9-DIGIT EXTENDED BASIC UNDER OS-65D—PRINTER USE

When 0S-65D is being used with the C1P, output can be directed to the printer by changing the output flag. This
is accomplished by a disk operating system command. The following illustrates the method of accomplishing this:

DISK!I“IO ,01”— this directs subsequent output to the printer only
DISK!“10 ,02" — this directs subsequent output to the screen only
DISK!“|0 ,@3" — this directs subsequent output to both the printer and the screen

The default mode sets the output flag to send output to the screen. The output flag is automatically reset to 92"’
(the screen) whenever the computer encounters a syntax error or an abnormal condition such as a CONTROL-C
halt to a listing or run of a program.

For the purposes of printer output, setting the output flag to *“@3” has very much the same effect as entering
SAVE when using BASIC-in-ROM. The output to the printer can be terminated by resetting the output flag to ‘02"
with the command DISK!*10,02.”

41

Under OS-65D the command LIST#1 can be used to list the contents of the workspace on the printer without the
necessity of changing the output flag with a DISK!““10 command. The program is listed only on the printer (not on
the screen) when this command is entered. Printer output is also accomplished by PRINT#1,“STATEMENT.”

Another method to output to the printer is to use a POKE8994,1 for output to the printer only and POKE8994,3
for output to the screen and the printer simultaneously.

A complete discussion of the I/0 capabilities of the C1P under 0S-65D is beyond the scope of this manual. The
interested user is referred to the 0S-65D USER’s MANUAL for a complete treatment of this topic.

If the user adds the 630 1/0 Expander to his Challenger 1P, the choice between modem and high speed printer

ports is under program control rather than manual control by a switch.

42

SECTION 14
MODEM AND TERMINAL COMMUNICATIONS

The Challenger 1P can be used as a terminal to communicate with another computer over a telephone. In order to
use the Challenger 1P in this manner requires a modem (short for “‘modulator-demodulator™). This is a hardware
item used to connect a telephone to your computer. The computer signals the modem to generate or receive tones
which are carried over the telephone lines. Ohio Scientific offers a competitively priced modem suitable for use with
the Challenger 1P, catalog item AC-11P.

An RS-232 port is provided for connecting a modem to the rear of the Challenger 1P. In order for the Challenger
1P to communicate with the modem, the selector switch on the rear panel of the computer must be set to the right

(modem) position.
The following is a general summary of the sequence of steps necessary to use the CIP as a terminal:

1. Connect a modem to the modem port and set the selector switch on the back of the C1P to the right hand
position. The modem should be set to full duplex and originate mode.

2. Load the modem program provided by Ohio Scientific into the C1P. When it is loaded the computer will re-
spond READY. Phone numbers of local modem services are available from your local OSI dealer.

3. Dial the number of the remote computer. When the number dialed answers you should hear a high pitched
tone. Insert the phone in the modem and follow the instructions displayed on the screen. The computer called
will probably require that you enter a user code and password.

When the Challenger 1P is equipped with the 63@ I/0 Expander the selector switch on the rear panel of the com-
puter is removed. For these models of the C1P, a bit of the special control register located at memory location 63456
(address F7E@ in hexadecimal) is used to select between printer and modem 1/0. For example,

POKE 63456,0 selects the printer
and
POKE 63456,4 selects the modem.

NOTE: See page 77 for more information:

SECTION 15
JOYSTICKS AND KEYBOARDS

JOYSTICKS

The joysticks provide realistic and convenient input devices for games and control. When the joysticks are con-
nected (as shown in Figure 1) and enabled, they generate a digital signal which may be read by the computer.

Only one joystick may be enabled at a time, this is accomplished via a POKE statement. The joysticks are desig-
nated A and B, and the POKEs to enable them are:

POKE 63440,127 enables Joystick A
POKE 6344@,224 enables Joystick B

As seen in Figure 12, each joystick offers nine possible unique physical positions, labeled A-L In addition to these
positions, each joystick has an “‘action key,”” which effectively doubles the possible combinations for each joystick.
Detection of the various positions, for a particular joystick, is accomplished by the following procedure;

First, POKE on the joystick that you wish to “‘read,”’ for example POKE 6344%,127 to detect Joystick A outputs.

Next, PEEK location 63440 with one catch. In order to avoid unintentional interaction between the joysticks, it is
necessary to use the logical function OR on the value PEEKed at 63440, for example, PEEK (63440) OR 224 for
joystick A [PEEK (6344@) OR 7, for joystick B]. The effect of this command is that the computer will ignore any bit
patterns generated by inadvertent use of joystick B while monitoring the output of joystick A.

Figure 11 lists all possible decimal output values from the joysticks, including values with and without the ‘‘action
key”’ depressed.

JOYSTICK A JOYSTICK B
ACTION KEY ACTION KEY ACTION KEY ACTION KEY
NOT NOT

DEPRESSED DEPRESSED DEPRESSED DEPRESSED
A 239 238 223 95
B 235 234 207 79
C 251 250 239 111
D 243 242 175 47
E 247 246 191 63
F 245 244 183 55
G 253 252 247 119
H 237 236 215 &7
I 255 254 255 127

Figure 11: Decimal Values Returned by Joysticks

POSITION 11S THE CENTER |
(NEUTRAL) POSITION '

ACTION i

TOP VIEW
Figure 12: Joystick

L]

The following program, called Joystick Arrows, serves two purposes. First, it is a concise example of “how-to”
program in order to use the joysticks. Second, it can serve as the basis of your own game programs.

Figure 13 depicts the various characters used by Joystick Arrows. Figure 14 is the flowchart for this program. .
Clean out the workspace of your computer (use a NEW), and enter the program exactly as it appears on page 47.
After you have it working, store it on tape or disk for future reference and possible modification.

While experimenting with Joystick Arrows, you may find that the arrow occasionally disappears. This happens be-
cause the program does not check to see whether the location (variable P) actually corresponds to a screen location. ‘
As an exercise, try to modify Joystick Arrows to prevent the arrow from going off the screen.

1

16 $10

18 $12 19 $13
| Ih—‘
l_'— L
]
20 $14 21 $15 22 $16 23 $17

Figure 13: Characters Used in Joysticks Arrows Program

START

CLEAR SCREEN
SET VARIABLES

POSITION A?
NO
POSITION B?
NO
YES INCREMENT
LOCATION
COUNTER
NO |«
POSITION D?
—— NEW
CHARACTER
NO
E{s)
* DETAIL OF TYPICAL OPERATION
NO
NO |
POSITION G? YES °

NO !
=)
- NO |

Figure 14: Flow Chart for Joystick Arrows

ERASE OLD
CHARACTER

OUTPUT

46

JOYSTICK ARROWS PROGRAM

10 FORSC=1 TO 25: PRINT: NEXT :REM CLEAR THE SCREEN |
20 AP=-32: BP=—31: CP=1: DP=33 :REM CONSTANTS FOR

30 EP=32: FP=31: GP=—1: HP=-33: IP=0 :REM MOVEMENT

40 A=239: B=235: C=251: D=243 :REM JOYSTICK A

60 P=53711: BLANK=96

70 POKEG3440@, 127: POKEP,16
11p R=PEEK(63440) OR 224 ‘REM CHECK JOYSTICK A
120 IF R=IP THEN 110
200 REM POSITION A?
219 IF R=A THEN 230
220 GOTO 3¢9
230 POKEP,BLANK
250 P=P+AP: POKEP,16
300 REM POSITION B?
31@ IF R=B THEN 330
320 GOTO 400
33¢ POKEP,BLANK !
350 P=P+BP: POKEP,17 |
409 REM POSITION C? ‘
41Q9 IF R=C THEN 430
429 GOTO 500 ‘
430 POKEP,BLANK '
450 P=P+CB: POKEP,18 |
50@ REM POSITION D? !
510 IF R=D THEN 530
520 GOTO 600
530 POKEP,BLANK
55¢ P=P+DP: POKEP,19
60@ REM POSITION E? I
610 IF R=E THEN 630 i
620 GOTO 700
630 POKEP,BLANK
650 P=P+EP: POKEP,20
700 REM POSITION F?
710 IF R=F THEN 730
720 GOTO 800 \
730 POKEP,BLANK !
750 P=P+FP: POKEP,21
800 REM POSITION G? 1
810 IF R=G THEN 830 ,
8290 GOTO 900 ‘

50 E=247: F=245: G=253: H=237: |=255 :REM POSITIONS ‘

830 POKEP,BLANK

850 P=P+GP: POKEP,22

900@ REM POSITION H? |
910 IF R=H THEN 930

920 GOTO 110 .
939 POKEP,BLANK

950 P=P+HP: POKEP,23

999 GOTO 110
1000 END

KEYPADS

The keypads function on all C1P’s equipped with the optional 639 10 expander board. Two keypads, designated A
and B, plug into the connectors shown in Figure 1.

Several steps are involved in using the keypads. The keypad memory location is 63440. Figures 15 and 16 detail
the POKEs and Peeks used with the keypads. The following short program is presented as an example of keypad
programming. Suppose that you want to determine if the ““2” key on keypad A has been depressed. The following
routine will do just that.

10 POKE 63440,239
20 IF PEEK(63440) =191 THEN PRINT “2 PRESSED"
30 GOTO 2¢

The phrase ““2 PRESSED”’ will be printed on the screen whenever the 2’ key on keypad A is pressed. You may
ask, “‘why 239 in line 10 and 191 in line 20?”’ For the answers, examine Figure 15. Note that the row containing
‘2" must be “turned on’’ (by a POKE63440,239) and a ““2”’ output is then indicated by the value at the top of the
column containing ““2”°, or C6=191). That’s why 239 and 191.

The following program illustrates one method to recognize all twelve keys of keypad A under software control.
This type of routine would be useful in arithmetic quiz and drill type programs or as a numeric input routine for an
accounting package and many others.

10 X =63440
100 POKEX,239
105 Y =PEEK(X) :REM CHECK ROW 4
110 IFY=127 THEN PRINT “1”:GOTO 10
120 IF Y=191 THEN PRINT “2":GOTO 10
130 IF Y=223 THEN PRINT “3":GOTO 190
200 POKEX,247
205 Y=PEEK(X) :REM CHECK ROW 3
210 IF Y=127 THEN PRINT “4":GOTO 10
220 IF Y=191 THEN PRINT “5”:GOTO 10
230 IF Y=223 THEN PRINT “6":GOTO 10
300 POKEX, 251
305 Y =PEEK(X) :REM CHECK ROW 2
310 IF Y=127 THEN PRINT “7":GOTO 10
320 IF Y=191 THEN PRINT “8":GOTO 10
33p IF Y=223 THEN PRINT “9”:GOTO 10
400 POKEX,253
405 Y=PEEK(X) :REM CHECK ROW 1
419 IF Y=127 THEN PRINT “*:GOTO 10
420 IF Y=191 THEN PRINT “@":GOTO 10
43p IF Y=223 THEN PRINT “#”:GOTO 10
500 GOTO 19

48

VALUES FOUND WHEN PEEKED

127 191 223 239 247 251 253 254
Cc7 ce C5 Ca C3 cz C1 co |

[127 R7

191 R6

223 R5

239 R4

VALUES
TO POKE

247 R3-

251 R2

253 R1

254 RO

Figure 15: Keypad A

VALUES FOUND WHEN PEEKED

127 191 228 239 247 251 253 254
c7 €6 C5 C4 €3 GC2 ©C1 CO

[127 R7 |

191 Ré

223 RS

239 R4

VALUES
TO POKE

247 R3

251 R2

253 R1

\ 254 R
Figure 16: Keypad B

SECTION 16
AC REMOTE CONTROL SECURITY

The installation of the 63@ 1/0 Expander on the Challenger 1P makes it possible to use the C1P to control lamps
and appliances throughout the home and to monitor a home security system. These popular applications are de-
scribed in this section.

Ohio Scientific offers the AC-12P remote control starter set including an OSI modified BSR X-1f) command con-
sole, two lamp modules, two appliance modules and software. Ohio Scientific offers a special home control 0S-65D,
designated HC1, floppy disk operating system with the following capabilities:

1. Compatible with most normal BASIC programs.

2. Supports the time of day and count down event timer.

3. Supports up to 16 separate channels of AC remote control (requires the CA-21 option).
4. includes proportional control of lighting.

5. Constantly maintains on/off sensor detection of up to 48 inputs.

6. Disk event logging by time or event.

The C1P MF with the 63@ incorporates an internal real time clock. Thus the home control operating system may
always know what time it is and maintains a count down timer which can be used to cause a user specified action to
occur at a specified time (such as ‘‘two hours from now turn on the front porch light’”).

The AC-12P remote system can be simply used to turn a few things on or off or it can be expanded to a full blown
computerized home control system. Installation of the AC-12P on Challenger 1P is accomplished by connecting the
modified BSR X-19 command console to the AC-12P interface Jjack on the rear panel of the Challenger 1P (see
Figure 1 in section 3). Signals sent to the command module by the computer are transmitted over existing home
wiring to special light and appliance modules which plug into wall sockets. For further details refer to the documen-
tation included with the AC-12P.

The Challenger 1P can be interfaced with a Fyrnetics Lifesaver Home Security System. This system, and support-
ing software, is available from Ohio Scientific as AC-17P. The Fyrnetics unit scans various security monitor inputs
and audibly registers any fault condition. In addition to the audible signal, four conditions are registered at screw
connections at the rear of the Fyrnetics unit. The Ohio Scientific software monitors these four connectors via a 16-
pin DIP cable. When a fault is detected by software, any number of different actions may be taken. The demon-
stration diskette included with the system reflect the simplest approaches.

The AC-17P is connected to your Challenger 1P at port J3 on the rear panel (see Figure 1 in section three). For
more detail see the instructions included with the AC-17P unit.

50

SECTION 17
PARALLEL 1/0

EXTERNAL SWITCHES, ALARMS, OR INDICATORS

In AC control and home security systems, there is often need to sense switch openings or closings. Relay contacts
might indicate an air-conditioner ““on”” for an energy management system; an open window might be read as a set of
open contacts to a home security system. Individual imagination is the limit.

The C1P system provides (in the CA-21 package) the ability to sense 48 separate remote contact-pairs. Each of
these contact-pairs (lines) is to be at either @ volts or 5 volts (standard TTL levels). When these lines are computer
driven (used for output), a maximum of two TTL devices can be driven at a time. If devices other than OSI periph-
eral devices are used, be cautioned to use good circuit practices in interfacing circuits.

The input lines are grouped as 6 sets of 8 lines (6x8=48), or 6 input registers. Associated with each input register
(group of 8 lines) is a mask register (tells which of the 8 lines to ignore) and an active state register (tells whethera 5
volt or @ volt signal is to be the chosen active state). The state of each line can be sensed by examining the register
bit which reflects the state of the connected line. In the case of windows, for example, it might be desired to identify
the active state as an open window in one program but in a different program to have the active state reflect a closed
window. Which one is desired will depend on the program.

The associated registers, i.e., the mask register and active state register, are used by the real time monitor,
RTMON, to systematically scan the input lines. When an input line becomes active, RTMON's services are re-
quested (in the same manner as the count down timer requested service). Once again, discussion of how RTMON
uses these associated registers will be put off until after examination of the hardware which is used to support it.

The associated registers are memory locations which are examined to determine how to interpret switch positions.
In contrast, the hardware registers directly indicate line status, 5 volts or @ volts. The hardware registers also indicate
whether a set of lines is to receive signals (be read) or whether output signals should be sent to turn on/off devices
(to be written to).

External switches which can be used to provide 5 volts or § volts are connected (through back panel connectors,
Figure 1) to a Peripheral /nterface A dapter (P1A). The PIA presents groups of input lines for input or output of
signals. These input or output lines are addressed in groups of 8 lines. The PIA is a single integrated circuit. Its or-
ganization and use are best explained in terms of its addressing, i.e., where the computer looks to input or output
data. For this purpose, a map is created.

PIA REGISTERS

Map of the hardware registers used for input and output.

DATA REGISTER CONTROL REGISTER
HEX DECIMAL DECIMAL HEX
LOCATION LOCATION 7 ¢ BIT LOCATION LOCATION

C704 50948 Port 1A
CTRL Register 50949 C705
For Port 1A
C706 50950 | Port 1B
CTRL Register 50951 C707
For Port 1B
Cc7p8 50952 | Port 2A
CTRL Register 50953 C709
For Port 2A
C70A 50954 [Port 2B
CTRL Register 50955 c70B
For Port 2B
Cc7eC 50956 | Port 3A
CTRL Register 50957 C70D
For Port 3A
C70E 50958 | Port 3B
CTRL Register 50959 C70QF
For Port 3B

Each port A, port B pair is called a Peripheral Interface Adapter or PIA. These ports provide a way to enter data
from the outside world into the computer and to respond with computer-generated signals to the outside. The PIA
also holds or latches these input and output signals until the computer is ready to receive them (for input) or until
the outside devices can utilize them (for output). Each of the two ports on a PIA (port A and port B) contains 8 lines
which may be individually used for input or output.

The CA-21 option contains three PIA’s. It is connected to the C8P computer by a 16 pin connector, J2, shown in
Fig. 1. External devices are connected to the three sets of input port pairs. Since three sets of port A-port B pairs are
accommodated (each port 8 bits wide), there are 3*2*8 =48 lines available for external connection.

The operating system will initialize the scan of PIA’s to include a complete CA-21 option group of PIA’s as a
default. Scanning fewer PIA’s or scanning the PIA at 63232 decimal (F7@9 hex) will require making the changes
(POKES) just illustrated.

For example, to scan all 48 lines starting at 50948 decimal (C7@4 hex), all six data registers (ports 1A, 1B, 2A, 2B,
3A, 3B) must be scanned along with six control registers. Therefore, location 8992 decimal must be loaded with
12—1=11 (the number of scanned registers minus one). These POKEs can be accomplished as

POKE 890211 : REM LOOK AT ALL 6 DATA AND 6 CONTROL REGISTERS
POKE 8909,4 : REM LOWER HALF OF C7p4 PIA PORT ADDRESS
POKE 8910,199 : REM SINCE C7 hex=199 decimal

(Only decimal values may be used with POKEs.)
With these POKEs, RTMON will check for an active state.

The foregoing has been a review of the connections to the PIA. Now look at the operation of the PIA. The ports
(port A and port B) serve two purposes. Each port accomodates input or output signals. Additionally, these port A
and port B pairs serve as data direction registers. When serving as a data direction register, the port specifies which
bits serve as input and which serve as output bits. The action of the port, whether it serves as an input/output port or
as a data direction register, is set by yet another register, called the control register. A control register is associated
with each port. If the control register is POKEd with zeros, then the port serves as a data direction register.

When the control register is POKEd with a 4, the port reverts to its data handling function. By using a data port to
serve as a data direction register, the number of hardware connections is reduced. But to understand its increased

52

complexity of function requires paying the price of additional work. To illustrate, for example, the use of the PIA to
read port 1A at location 50948 (C7(4 hex), the steps are

1. POKE 50949,0
: This address, one beyond the PIA port 1A address, is the control register for port I A. A zero in the control
register will allow the use of the PIA port 1A address for its alternate use, designating which bits are input or

output (called a data direction register). A one indicates output, a zero an input. At the completion of this
POKE, the control register contains

50949 |0O0D PODP

and the port 1A will serve as a data direction register. Therefore, the command

2. POKE 5@948,127
will place the bit pattern @111 1111 into the data direction register. The data direction register will now be

50048

Bit 7, the leftmost bit of the data direction register contains a {) indicating that its corresponding line will be an
input line. The other register bits (bits @ to 6) are 1's, indicating that their corresponding data lines will serve ‘
as output lines.

3. The PIA port 1A is now ready to revert to its data handling function. This is achieved by
POKE 509494 '
which commands the control register for port 1A to perform its 1/O function.
4. Bit 7, the leftmost bit, was previously set as an output bit in step 2. This output can be set to a high value by
POKE 50948,64

This is a bit pattern 1000 @0@@. The data register (the alternate function of the port) will now contain I
509481000 0PP0] |
Likewise bit 7 could have been set to a zero by '
POKE 509480 \
5. If it were desired to read bit 6, which was designated as an input bit, the result could be
BIT6=PEEK (50948) AND 64

where 64 has a bit pattern @100 @@@@. The 1 in the bit pattern corresponds to the desired line. To the user,
location 50948 appears as

7 6 56 4 3 2 1 0 bit
1
50948 | X |or [X | X [X|X|X|X
?

where X indicates that A doesn’t care about the value. By ANDing the contents of 50948 with the value |
|
1000000

only the value of bit 6 will be examined. If bit 6 of 50948 is a zero, then BIT6=0: if bit 6is 1, then BIT6=64.
Testing for zero or non-zero value of BIT6 provides a convenient programming test to determine the bit 6
input line state.

The socket pin connections are shown in appendix B; socket mating information is also provided.

53

A short program to make all lines for port 1A into read (input) lines and all lines for port 1B into write (output)
lines follows:

5 REM PIA INITIALIZATION SUBROUTINE AT 1000
19 GOSUB 1000
20 INPUT “SIDE (A OR B)”",C$
3@ IF C$="A"GOTO 199
40 |IF C$="B"GOTO 2¢9
50 GOTO 20
100 IF A$="1"GOTO 150
110 INPUT “OUTPUT TO A”;K
120 POKE XK
13¢ GOTO 20
150 PRINT“INPUT TO A IS”;PEEK (X)
160 GOTO 20
200 IF B$="1"GOTO 250
210 INPUT “OUTPUT TO B";K
220 POKE X+2K
230 GOTO 2¢
250 PRINT “INPUT TO B IS";PEEK (X+2)
260 GOTO 2¢
1000 INPUT “STARTING ADDRESS OF PIA”;X
1010 INPUT “A SIDE | OR O”;A%
1920 INPUT “B SIDE | OR O”;B$
1030 POKE X+1,0:POKE X+3@ : REM SETTING CTRL REGISTER TO ZERO
1040 IF A$="1" THEN POKE X,0 : REM PERMITS SETTING DATA DIRECTION REGISTER
1042 IF A$="1" THEN GOTO 1050
1045 POKE X,255 : REM IF NOT INPUT, THEN SET AS OUTPUT
1050 IF B$="1" THEN POKE X+20
1952 IF B$="1" THEN GOTO 1060
1955 POKE X+2, 255
1060 POKE X+1,4:POKE X+34 : REM CTRL REGISTER TO FORCE I/0O
1970 RETURN

Multiple lines may be checked at one time.

54

The home security system addressed at 63232 (F70@ hex) is also a PIA port. It is one of two ports. Two ports (of 8
bits each) are available, with the first 4 bits being reserved as:

Car Alarm Intruder Alarm
Misc.
Alarm_l rFire Alarm
Location (Hex) Bit7 6 5 4 3 2 1 0

63232 F700 Port A

63233 F701 CTRL A

63234 F702 Port B

63235 F703 CTRL B

A program to handle this device is similar to the previous programs. For example, to check for a fire alarm
10 REM SET PORT A AS INPUT, LOOK AT BIT @, THE FIRE ALARM BIT
20 POKE 63233,0 : POKE 632321 : POKE 632334
3@ IF PEEK (63232) = @ THEN GOTO 100

40 GOTO 29
This program segment will continually look at the input port and check for the bit assigned by OS/ to fire alarm

checks.

SECTION 18
CONNECTION OF SIXTEEN PIN BUS DEVICES

Ohio Scientific is pleased to introduce a unique new product line—The 16 Pin 1/0 BUS. With this system, it is
possible to add up to eight special function boards while occupying only one backplane slot.

This is made possible by a novel BUS extension method which allows decoding and timing signals plus eight bits
of data to be carried on standard, inexpensive 16 pin ribbon cables.

Up to eight inexpensive 16 pin cables with standard DIP connectors may be attached to a single CA-20 board
which in turn occupies one slot of the standard Challenger backplane. Alternately, one 16 pin 1/0 BUS cable may be
attached to the A-15 board at the rear of all C1P products equipped with a 63@ board.

Currently, five HEAD END CARDS are available for interconnection to the system via the CA-20 or CA-15
boards.

COMPUTER INTERFACE TO SIXTEEN PIN I/0 BUS

The 16 pin I/0 BUS may be attached to the computer via two different boards—the CA-15 or the CA-20. The
descriptions of these boards are as follows:

CA-15 BOARD

The CA-15 board is a standard accessory interface installed on the following Ohio Scientific systems: C4P-MF,
C4P-DMF, and C8P-DF. This is also installed on C1P’s equipped with a 630 option.
The CA-15 is mounted at the rear of the computer and contains the following interface connection:

Joystick and numeric keypad

Modem and serial printer

Sixteen PIA lines (normally used for the Home Security system—AC-17P)
Sixteen Pin I/0 BUS

The interconnect for the Sixteen Pin 1/0 BUS is simply a 16 pin DIP socket. To use the BUS, the only thing nec-
essary is to attach one end of the 16 pin ribbon cable to the CA-15 board and the other end of the cable to one of the
HEAD END CARDS.

Please note that some of the HEAD END CARDS require more power than may be practically carried via the rib-
bon cable alone. Therefore, some of the cards require auxiliary power supplies.

CA-20 BOARD

The CA-20 board contains all the necessary logic to decode eight distinct HEAD END CARD interfaces. The ac-
tual interconnect, as with the CA-15, is via simple 16 pin DIP sockets and standard 16 pin ribbon cables.

The CA-20) board also requires one slot of the computer’s backplane. But remember, from this one slot access is
gained to a maximum of eight accessory boards.

The CA-20 is recommended for use in the Ohio Scientific C2 series and C3 series computers. It can also be in-
stalled in C4P and C8P series systems with some modification to the CA-15 interface. The CA-20 can be used in
conjunction with C1P computers equipped with the OSI bus expander and 62§ option.

Since the logic required for the I/0O BUS interface is simple, an additional feature was added to the CA-20 board—
a crystal controlled “‘time-of-day™ clock (hardware) subsystem. The operation of the clock, excepting reading time
and setting time, is totally independent of the host computer. As a matter of fact, with the included on-board, auto-
recharging, battery back-up, the computer may actually be turned off for several months without losing time.

The features of the clock subsystem are as follows:

Hours, minutes, seconds and 1/19 seconds
Day of week

Day of month
Month of year
Four Year calendar

In the C2 and C3 series computers, the CA-2f board can actually control the power cycling of the entire computer
when equipped with an optional power sequencer package. This means a time (month, day, hour, etc.) may be pre-
set within the clock subsystem and when that preset time agrees with the actual time, A.C. power is applied to the
entire computer system through the power sequencer. At a later time, the system’s A.C. power may also be re-
moved and the system shut down under software/clock subsystem control.

For applications where the clock subsystem is not required, the CA-2@A will perform all the Sixteen Pin 1/0 BUS
functions associated with full-feature CA-20.

HEAD END CARDS

HEAD END CARDS is a general name used to describe any or all of the special function boards which attach to
the Ohio Scientific Sixteen Pin 1/0 BUS. There are currently five such boards and, with the exception of the CA-22,
they will only interface with the computer via the Sixteen Pin 1/0 BUS.

Please note, as detailed earlier, a CA-15 or CA-2) board must be used at the “‘computer end”’ of the Sixteen Pin
1/0 BUS to complete the interface.

In the following pages a brief product and application description of the currently available HEAD END CARDS
will be presented.

THE CA-21 BOARD—BIT SWITCHING AND SENSING

The CA-21 is a 48 line parallel /0 board featuring three 6821 PIAs (peripheral interface adapters) and prototyp-
ing/interconnect areas.

The use of PIAs in the design allows for maximum interface versatility as any one of the 48 I/0 lines may be con-
figured as either an input or an output. As outputs, each line is capable of driving a minimum of one standard TTL
load.

Additional versatility is added because 24 of the lines, when configured as outputs, may simultaneously function
as inputs. This feature, although somewhat confusing, is extremely useful for applications such as switch matrix
decoding.

Each of the 48 lines is brought out to two foil pads (suitable for wire wrap stakes) as well as a location on one of
four 12 pin Molex-type female edge connectors. There are also eight 16 pin DIP socket locations which are intended
for use as prototyping areas. Additionally, the 12 PIA ‘‘hand-shaking’ lines are brought to 12 single foil pads.

The CA-21, with proper buffering, may be used for virtually any computer controlled bit switching or bit sensing
application imaginable. With a full complement of eight CA-21s interfaced via the CA-20, a total of 384 individually
controllable 1/0 lines are possible!

An interesting application using one CA-21 board would be a complete, if somewhat slow, emulation of the
standard Ohio Scientific BUS.

A more practical application might be augmenting the standard Home Security System (AC-17P) with “‘hard-
wired’” sensors.

One type of sensor easily added is a standard window *‘perimeter detector.”” This could be done with commer-
cially available adhesive foil tape. A break-in (through a broken window) could then be detected by sensing a break
in the foil tape.

Another useful application that could be set up in concert with the AC-12P wireless A.C. Remote Control, is
sensing when a room is entered. This could be accomplished with pressure-switch door mats or door switches.
When room entry is detected, the lights could be turned on or turned off on exit.

For designing any sort of dedicated control system, the CA-21 is an ideal choice. It is possible to easily sense many
types of input (pressure transducers, flow sensors, switches, etc.) while controlling outputs from a simple single
LED display to a network of solid state relays controlling A.C. power.

THE CA-22 BOARD—ANALOG I/0

The CA-22 is a high speed analog 1/0 module. Although the CA-22 is classified as a HEAD END CARD, it
differs from the rest of the family in that it may also be plugged directly into the computer’s standard internal BUS.
This allows for maximum flexibility in the use of the CA-22.

The analog input section of the CA-22 consists of a 16 channel analog multiplexer. This means that up to 16

57

separate signals may be connected directly to the CA-22. Also included is a sample and hold circuit followed by the
analog to digital converter circuitry.

The A to D converter is capable of either 8 bit or 12 bit operaiion. These options are selectable under software
control.

The accuracy of the converter is plus or minus one in the least significant bit. The stability of the circuit is rated at
one millivolt drift per degree Celsius.

The A to D conversion is extremely fast. It is capable of digitizing up to 66,09 samples per second in the 8 bit
conversion mode and 28,000 samples per second in the 12 bit mode. Shannon Sampling Theory states that signals
should be sampled at twice the highest frequency present. Therefore, it is possible to convert signals with a frequen-
cy greater than 3K Hz. Clearly, high fidelity audio is well within the spectrum of the CA-22.

The multiplexer has very high impedance inputs and is capable of accepting inputs in the range of — 1@ volts
through + 10 volts. The input is jumper selectable for other settings including a single sided range of () through +1@
volts.

Due to the indeterminable nature of the actual inputs that may actually be applied to the CA-22, only the multi-
plexer inputs are brought out. However, a quad op-amp is laid out in foil which may be populated in several different
modes to handle some of the more “‘common’’ input configurations.

The analog output section of the CA-22 consists of two identical high speed digital to analog converters. Each
DAC can convert either 8 bits or 12 bits of data. Data input to the DACs is latched in such a manner that, when in
the 8 bit conversion mode, the other four (of the total of twelve) bits are continuously output at a predefined value
which may, of course, be defined under software control.

The output of each DAC is buffered with a high speed op-amp capable of changing output voltage at the rate of 2§
volts per microsecond. The standard configuration of each output is bi-polar with a voltage swing of — 1@ volts
through + 1 volts. This is jumper selectable to allow a uni-polar output of @ through + 10 volts.

Some additional 1/0 capacity is provided on the CA-22. There are three TTL level inputs and six open collector
logic outputs. These are strappable to be either standard TTL level outputs or high-voltage outputs.

The CA-22 can be used for a multitude of analog sensing and/or analog controlling applications.

Using the proper transducers and the 16 input channels, it is possible to monitor the temperature in several zones
of a home or office. By extending this system with a CA-21, precise temperatures can be maintained by switching
the proper controls on and off.

Another interesting, if somewhat obvious application, is in audio processing. Reverberation, phase shifting and
echoing are just a few of the uses implementable.

If blocks of RAM were used for data storage, other experiments such as frequency doubling, etc., could be per-
formed.

I more sophisticated software techniques, such as fast Fourier transforms, are applied to store input data, very
elaborate signal processing becomes realizable. Projects such as audio spectrum analyzers and speech recognition
experiments are certainly practical. Note, in these types of applications, it is likely that some signal pre-processing in
hardware is certainly beneficial—if not totally necessary.

Employing both DAC outputs and the on-board unblanking circuit, X-Y oscilloscope plotting is an interesting ap-
plication. By using these techniques and one or more of the analog inputs, a digital storage scope can be constructed.
Note, both of these applications require access to an oscilloscope capable of X-Y input as well as blanking.

THE CA-23 BOARD—EPROM PROGRAMMER

The CA-23 is an EPROM programmer designed for use with the growing families of 5 volt only EPROMS. With
the CA-23 you can program and verify all 1K through 8K byte EPROM:s of this type. Note that these parts are often
identified as 8K —64K bit EPROMS.

The CA-23 can program (or verify) data in two basic modes—EPROM to/from EPROM or EPROM to/from
computer RAM memory. Additionally, EPROM data may be read directly into the computer’s RAM memory.

There are four LED indicators on the CA-23. The first is *‘SOCKET UNSAFE.”" This means that a programming
voltage is present at the socket and if an EPROM is removed or inserted it is likely to be damaged.

The second indicator is ““PROGRAMMING." This means that the EPROM is currently being programmed.

The third indicator is “*ERROR.” This means that somewhere along the line a programming attempt was unsuc-
cessful.

The final indicator is “PROGRAM COMPLETE.” This means that the program and verification were successful.

The most intriguing application for this product is the creation of *‘custom’ parts for the computer or peripherals.
This could range from a new system monitor to a new high level language. It could even include a new character
generator for the CRT or printer. Note, however, tinkering around with the internals of computers and peripherals

58

requires a fairly high degree of technical expertise. Also, most manufacturer’s warranties are voided by these types
of modifications.

Several OEM (original equipment manufacture) and Research/Development applications will be immediately
obvious to those involved in that work.

The CA-23, as previously mentioned, is designed for use with 1K through 8K byte EPROMS. These parts come
in various package styles and have various product names. For example, Intel’s 2K x 8 part is the 2716, Texas
Instruments’ part is known as the 2516.

The CA-23 has both 24 pin and 28 pin zero insertion force sockets for reading, programming and verifying the
EPROMS.

THE CA-24 BOARD—PROTOTYPING

The CA-24 is a solderless bread-board designed for prototyping, experimental and educational applications.

The bread-boarding is made up of seven solderless plug-strips of the type manufactured by AP Products. Two of
the plug-strips contain a connection matrix of 5 by 54 connections and are used as signal distribution points.
Another pair of 96 location plug-strips are for powering the bread-board area. The actual experimenter area is com-
prised of three plug-strips, each with a 1@ by 64 location connection matrix. Additionally, sixteen LED indicators
and sixteen DIP switch positions are provided for signal observation and control functions.

Board I/O is via TTL latches and bi-directional PI1A ports as well as direct (buffered) data, signal and control lines
from the computer BUS. This method allows you direct interconnection of devices such as 6850 ACIAs in addition
to doing more “‘isolated’” and/or independent circuits.

The CA-24 also contains a ‘‘clock’ generator which is continuously variable from approximately 25,090 Hz.
through 70,0@@ Hz. It is also possible to connect the clock to an on-board 16 stage divider chain. This allows division
of the fundamental frequency by as little as 21 (2) to as much as 2'6(65,536).

The applications for the CA-24 are primarily prototyping and experimenting. Parts may be inserted and removed
from the terminal strip blocks over and over. Interconnection of parts is accomplished simply through the use of
solid, narrow gauge wire jumpers. Errors in design or connection are extremely easy to correct.

The CA-24 lends itself very well to structured experiments that are common in the educational environment. It is
an ideal tool to aid in the teaching of computer and computer interface fundamentals.

THE CA-25 BOARD—ACCESSORY INTERFACE

The CA-25 is designed to implement some of the functions normally associated with the CA-15 interface board.

It allows direct connection of the Home Security System (AC-17P) and/or the Wireless A.C. Remote Control
System (AC-12P) to C2 and C3 series computers. Additionally, those who own an older Ohio Scientific computer
can now easily connect these systems to it.

An extremely useful application of the CA-25 is associated with small business systems. Using the CA-25 with
the Home Security System, and perhaps a CA-15V (Universal Telephone Interface with speech synthesizer output),
the computer could do payroll, inventory, etc. by day and “‘guard’ the shop by night.

SUMMARY

With the introduction of the 16 pin I/0 BUS, Ohio Scientific has opened a new world of interfacing capabilities for
both the large and the small computer user.

Systems ranging from totally automated sampling and control stations to complete R/D setups to educational lab
stations are now available via standard building blocks and standard computer systems.

For pricing and availability, contact the nearest Ohio Scientific dealer.

SECTION 19
ADVANCED FEATURES

With the addition of the 630 I/0 Expander, the C1P user can generate color graphics on a color monitor or stand-
ard color television set. The color monitor or color television is attached to the Challenger 1P in the manner de-
scribed in section four.

The color option is controlled by one bit of the control register at 55296 (address D8@® in hexadecimal). For
example

POKE 55296,0 —disables color, defaults to black and white display
POKE 55296,2 —enables color display.

Appendix 5 gives a complete listing of the values to POKE at 55296 to obtain various combination of options such
as DAC sound and color.

Color display is handled in the same manner as the graphics display. The color displayed within a cell on the
screen can be set with a POKE to an associated color memory location in the same way that the character displayed
within a cell can be set with a POKE to the associated graphics memory location. Figure 17 is a color memory map
for the Challenger 1P. The map is for the 24 x 24 display mode. As stated earlier in the manual the 12 x 48 display
mode is intended for the display of text. Note that the color address of each cell is offset from the graphics address
by 1#24. Each color memory location on the Challenger 1P is 4 bits in length. Other memory on the Challenger 1P is
8 bits in length. Thus each color memory location can store a number in the range §-15 (decimal). The values cor-
respond to the following 16 different colors:

HEX DEC DEC HEX
D485 54405 54429 D49D
D4A5 54437 54461 D4BD
D4C5 54469 54493 D4DD
D4E5 54501 54525 D4FD
D5@5 54533 54557 D51D
D525 54565 54589 D51D
D545 54597 54621 D55D
D565 54629 54653 D57D
D585 54661 54685 D5ID
D5A5 54693 54717 D5BD
D5C5 54725 54749 D5DD
D5E5 54757 : 54781 DS5FD
D605 54789 54813 D61D
D625 54821 54845 D63D
D645 54853 57877 DB5D
D665 54885 54909 D67D
D685 54917 54941 DB9D
DBA5 54949 54973 D6BD
D6C5 54981 ‘55095 D6DD
D6E5 55@13 55¢37 D6FD
D705 55045 55069 D71D
D725 55077 55191 D73D
D745 55109 55133 D75D
D765 55141 55165 D77D

Figure 17: CIP Color Memory Map

DECIMAL VALUE COLOR

0 yellow
1 inverted yellow
2 red

3 inverted red

green |
inverted green
olive green

inverted olive green !

o ~N o O »

blue |
9 inverted blue ‘
10 purple |
11 inverted purple
12 sky blue i
13 inverted sky blue l
14 black |
15 inverted black (no color). l\

For instance, to clear the color memory, do the following
10 POKE 55296,9 i
20 INPUT “NEW COLOR(@-15)"; C
30 FOR J=54309 TO 55261 : POKE J,C : NEXT !

The character and the color displayed at a cell on the screen can be controlled with two POKEs. For example, the
short program

19 POKE 53776,239 |
29 POKE 54800,8 |
30 FORT=1TO 1000 :
49 NEXT T ll
5@ END ‘

will place a small airplane in a blue square near the center of the screen. Statements 3@-4@ were included in the
above program as a time delay loop. While the program is executing, the airplane will appear within the colored cell.
Once the program is finished executing, the computer will scroll the screen and respond OK. When the screen is |
scrolled all graphics characters move up on the screen, but the colors remain fixed. On disk based versions of the

Challenger 1P operating under 0S-65D it is possible to selectively enable and disable scrolling with the following

two POKEs:

POKE 98000 —disable scrolling

POKE 98@0,32 —enable scrolling

This capability can be extremely useful for “‘holding’ a graphics display on the screen. There is no convenient
way to disable scrolling when BASIC-in-ROM is used. An alternate approach, based upon the keyboard polling tech-
niques of section twelve to hold the display in place, is illustrated by the following program

: 19 REM—ENABLE COLOR
20 POKE 55296,2
30 REM—DISPLAY CHARACTER
49 POKE 53776,239
50 REM—ASSIGN COLOR
60 POKE 54800,8
70 REM—WAIT UNTIL

80 REM—USER PRESSES
90 REM—CARRIAGE RETURN
1@ REM—DISABLE CNTL-C
110 POKE 530,1
120 REM—POLL R5
130 POKE 57(88,223
140 REM—CHECK FOR CR
150 K5=PEEK(57088)
160 REM—CONTINUE UNTIL
170 REM—CR PRESSED
180 IF K5<>247 THEN 120
1990 REM—WHEN PRESSED
209 REM—RESTORE CNTL-C
210 POKE 530,0
220 END

This program displays the character and color in the cell and holds the display on the screen without scrolling until
the <RETURN> key is depressed.

The use of the built-in DAC to generate sound with the Challenger 1P was discussed in section ten. Although the
DAC is capable of generating high quality sound, using the DAC requires sophisticated programming techniques.
Moreover, the DAC demands the total attention of the computer when it is used. The 63@ I/0 Expander includes a
programmable tone generator. This tone generator allows the C1P user to produce simple tones with a minimal
amount of programming in BASIC. The signal from the programmable tone generator is available at the program-
mable sound output port of the rear panel of the C1P (see figure 1 in section three). The signal from this output port
should be fed into the auxiliary input of an audio amplifier or the audio input jack of the video monitor if it has one.

The programmable tone generator is controlled by bit 1 of a special control register located at memory address
63456 (address F7E@ in hexadecimal). For example,

POKE 63456,0 disables the programmable tone generator
POKE 53456,2 enables the programmable tone generator

Appendix 5 gives a complete listing of the values to POKE at 63456 to obtain various combinations of options such
as simultaneous programmable sound output and AC control. The frequency of the tone generated by the program-
mable sound generator is determined by the value POKEd into memory location 63424 (address F7C@ in hex-
adecimal). If the programmable tone generator is enabled and the user enters the statement

POKE 63424,N
then the frequency of the sound generated is determined by the following formula:
frequency = 49152/N cycles per second.

The value of N should not be set to zero since this will result in division by zero. This equation can be solved to
determine N as a function of the desired frequency

N = 49152/frequency.

In order to generate a tone of frequency 440 cycles per second, N should be 49152/44% = 111.7. This value
should be rounded to the nearest integer value (112) before it is POKEd at location 63424 since the POKE state-
ment can only be used to store integer values in the range #—255 (decimal).

There is continuous output from the programmable sound generator whenever it is enabled. The tone is constant,
changing only when the value stored at 63424 is changed.

The programmable tone generator provides an extremely easy means of generating sound with C1P. Although it

62

does not have the capability of generating the wide variety of sounds possible with the DAC, the sound it produces
are suitable for many applications such as sound effects in games.
The following program utilizes the programmable tone generator to play a short tune.

1@ REM—TWINKLE TWINKLE TUNE
20 REM—TURN ON SOUND GENERATOR

3@ POKE 63424,1 : POKE 63456,2
49 REM—READ AND PLAY NOTES
50 FORT=1TO 7
60 READ FRQ,COUNT
70N = INT (49152/FRQ)
80 POKE 63424,N
90 FOR A =1 TO 25@*COUNT !
100 NEXT A i
119 FORD=1TO 25
120 POKE 63424,1
13@ NEXT D
140 NEXT T
150 DATA 261. 6,1,261. 6,1
160 DATA 392 9,1,392. 9,1
170 DATA 440. 0,1,440. 0,1
180 DATA 392. 0,2 |

199 POKE 63456,0 :
200 END |‘

APPENDIX 1
COMPUTER GLOSSARY

ACIA (Asynchronous Communications Interface Adapter) An IC used for serial data transfer between a device such as
a small computer and a serial terminal.

A/D (Analog/Digital) Refers to changing an analog signal to a digital signal which the computer can use.

BACKPLANE BOARD (Sometimes called Mother Board) Allows simple interconnection between small computer
boards using the same bus.

BASIC (Beginners All-Purpose Symbolic Instruction Code) A popular computer language ideally suited for use with
Ohio Scientific computers. One of the simplest languages to learn, it can be used for a wide variety of applications.

BAUD A measure of the speed with which information can be communicated between two devices, e.g., if the
information is in the form of alphabetic characters, then 300 baud usually corresponds to about 30 characters per
second.

BIT (Binary InTeger) The smallest amount of information that can be known. (One or zero.) Eight bits equal one
byte.

BUS The means used to transfer information from one part of the computer to another. OSI uses a 48-pin BUS.

BYTE A unit of information composed of 8 bits, which is treated by the computer as a single unit. A byte is usually
used to represent an alphanumeric character or a number in the range of @ to 255.

CASSETTE A medium for the electronic storage of data. Similar to magnetic tape. Most personal computers use or-
dinary audio-cassette tape recorders and tape.

CENTRAL PROCESSING UNIT (CPU) The part of computer hardware responsible for interpreting data and ex-
ecuting instructions.

COMPUTER An electronic device which is programmable and which processes, operates on and outputs informa-
tion according to its stored program upon receipt of signals through an 1/0 device.

COMPUTER LANGUAGE A language that is used for programming a computer, e.g., BASIC.

DAC (Digital-to-Analog Converter) A device that changes digital signals into one continuous analog signal (voltage
output).

DATA The information, or set of signals, that is processed by a computer.

DIGITAL Word used to describe information that can be represented by a collection of bits. Modern computers
store information in digital form.

DISK A circular piece of rigid material that resembles a record, which has a magnetic coating similar to that found
on ordinary recording tape. Digital information can be stored magnetically on a disk.

DISK DRIVE A peripheral which can store information on, and retrieve information from a disk. A “floppy disk
drive™ can store and retrieve information from a floppy disk.

EPROM (Erasable Programmable Read Only Memory) Information stored in an EPROM IC (Integrated Circuit) can
only be removed by special light sources or specific voltages (depending on the type of EPROM). Through the use
of a special programming device, the user can store a set of information in the EPROM after it has been erased.

FLOPPY DISK A thin, pliable 8" or 5-1/4" plastic square for storing data. 8" disks store 3, or more, times as much
information as 5-1/4" floppies and access the information much faster.

FOREGROUND/BACKGROUND Operation term used to describe the ability of a computer to function with nor-
mal programs at the same time it monitors external devices, e.g., home appliances, security, etc.

64

HARD COPY Information printed on paper or any durable surface, as opposed to information temporarily pre-
sented on the CRT screen.

HARDWARE The physical equipment that makes up the computer system.

10 (Input/Output) Refers to bringing information into the machine in a form it recognizes and allowing the machine
to transmit information. In other words, communicating with the outside world.

INPUT Signals given to a computer for processing.

INTERFACE The connection between two systems. A printer interface, for example, connects the printer to the
computer.

JOYSTICK Peripheral, accessory equipment that permits the user to move the figures on the monitor. For exam-
ple, when you and another person play a joystick computer game, you operate joysticks to perform the functions of
the game.

K The initial “K stands for ‘‘kilo,” meaning 1,000. In computer language, K means 1,024 bytes of information
that can be stored in a computer system. A computer with 16K memory, for example, means that the computer has
16 times 1,024, which is 16,384 bytes of memory.

MEMORY The area in the computer for storage of data and instructions.
MICROCOMPUTER A computer based on a microprocessor.

MICROPROCESSOR The ““brains’® or CPU of a modern personal computer. All Ohio Scientific personal com-
puters use the 6502 microprocessor, generally recognized as the fastest microprocessor available.

MINI-FLOPPY DISK A small 5-1/4" floppy disk that stores about 1/4 the information of an 8" floppy disk.

MODEM Word derived from MOdulator-DEModulator. A device that allows the computer to communicate over
telephone lines and other communications media by changing digital information into audio tones (modulating)
and from audio tones into digital information (demodulating).

MONITOR A CRT or television screen. You can purchase an Ohio Scientific monitor to hook up to your computer
or else simply use an ordinary TV set and attach it with an RF converter.

0§ Operating system.

PC BOARD (Printed Circuit Board) A card with foils (electronically conductive pathways) connecting electronic
components which are mounted on the board.

PERIPHERAL Any device that can send information to and/or receive information from a computer, e.g., printer,
modem, etc.

PIA (Peripheral Interface Adapter) 1C used for parallel data transfer.
PRINTER A peripheral device which makes hard copy of letters and numerals.

PROGRAM A set of instructions, arranged in a specific sequence, for directing the execution of a specific task, or
the solution of a problem, by a computer.

PROM (Programmable Read Only Memory) Memory which can have information stored on it once, but, is not nor-
mally changeable.

RAM (Random Access Memory) A storage device and main memory of any computer, which can be read from and
written into. Information and programs are stored in RAM, and they can be retrieved or changed by a program.

ROM (Read Only Memory) A memory storage device in which the information is stored once, usually by the manu-
facturer, and cannot be changed.

SOFTWARE Programs and operating systems used by the computer; may be on cassette or on disk and in ROM.

APPENDIX 2
BINARY AND HEXADECIMAL NUMBER SYSTEM
THE 6502 ADDRESSING SYSTEM

Numbers in the traditional decimal (base 19) number system are represented as strings of digits selected from the
set of ten “‘decimal digits”

0,1,2845867280.

The position of each digit within a decimal number is associated with a place value. Thus, the decimal number 2987
can be realized as 2*10.00 + 9*10@ + 8*19 + 7*1. In the decimal number system, the place values (reading from the
right to the left) are the consecutive powers of 10 (the base).

1 = 1¢° (this is a mathematical convention)
10=10"=10
100 = 10° = 10*10
1000 = 10° = 10*19*19
10000 = 19° = 19*10*10* 1@ and so forth.

Within a computer, data is more conveniently represented as strings of #’s and 1’s (the “‘binary digits”), i.e., as
numbers in the binary (base 2) number system. In the binary number system place values are the consecutive
powers of 2 (the base). Thus, in the binary number system, the place values (reading from the right to the left) are

1,= 159=2"=1
10, = 2p=2"=2
100, = 4,5 = 2° = 2*2
1000, = By = 2° = 2*2*2
10000, = 16,5 = 24 = 2*2*2*2 and so forth.

Conversion of a number from the binary number system to the decimal number system is straightforward. Just add
up the place values corresponding to the locations of the digit 1 in the number. The binary number 119101 (binary)
can be rewritten in decimal notation as 32 + 16 + 4 + 1 = 53 (decimal).

The MCS65@2 microprocessor on the Challenger 1P is designed to process 8 bit (binary digit) data. Each memory
location in the C1P is capable of storing 1 BYTE or 8 bits of data. Each BYTE of data can be interpreted as an 8 bit
binary number in the range

PP000000 — 11111111 (binary) or equivalently
@—255 (decimal).

Itis easily checked that 11111111 (binary) = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 (decimal). In general sig-
nificantly more binary digits than decimal digits are required to represent a number. The decimal number 1090009
requires 20 binary digits.

To overcome this difficulty, the hexadecimal (base 16) number system is commonly used instead of the binary
number system to describe the contents of memory within a computer. The hexadecimal number system expresses
each number as a string of digits selected from a set of 16 ‘‘hexadecimal digits.”” Since the standard set of decimal
digits only includes 10 symbols, the characters A, B, C, D, E and F are included to yield a set of 16 hexademical
digits. These hexadecimal digits and their binary and decimal equivalents are listed below:

66

HEX BINARY DECIMAL

0 0000)
1 o001 1
2 0010 2
3 9011 3 |
4 0100 4 |
5 0101 5 |
6 p110 6 |
7 9111 7 |
8 1000 8 ‘
9 1001 9 |
A 1010 10 .L
B 1011 11 |
c 1100 12 |
D 1101 13

: E 1110 14 |
F 1111 15

A single hexadecimal digit is capable of representing any four digit binary number. An 8 digit binary number
(BYTE) can be easily converted to a 2 digit hexadecimal number simply by writing down the hexadecimal
equivalent for the last of the first four bits of the 8 digit binary number. For example,

11011001 (binary) = D9 (hexadecimal) (or $D9)
since 1901 (binary) = $9
and 11@1 (binary) = $D.

The conversion of larger binary numbers to hexadecimal is handled in the same manner working from right to left
converting each group of 4 binary digits to its hexadecimal equivalent. For example,

P101111010110001 (binary) = $5EB1
since @@QO1 (binary) = $1
1911 (binary) = $B
1110 (binary) = $E
and @191 (binary) = $5.

Conversely, a hexadecimal number can easily be converted to binary simply by replacing each hexadecimal digit by
its binary equivalent. For example,

$9E = 10011110 (binary)
since $E = 1110 (binary)
and $9 = 1001 (binary).

The memory addressing scheme on the Challenger 1P is based on the hexadecimal number system. The
MCS65@2 microprocessor on the C1P addresses memory via a 4 digit hexadecimal address. Thus, the allowable
addresses for memory on the Challenger 1P range from .

67

In the hexadecimal number system, the place values (reading from right to left) are the consecutive powers of 16
(the base).

$1=1,5=16°
$10 = 16,5 = 16' = 16
$100 = 256,5 = 16° = 16*16
$1000 = 4096,, = 16° = 16*16*16
$10000 = 65536,5 = 16*16*16*16* and so forth.

Based upon these place values, conversion from hexadecimal to decimal mode is relatively straightforward. For ex-
ample,

$2A7B = 2"4096 + 10*256 + 7*16 + 11*1 = 19875 (decimal).

Note that we have used the fact that $A = 10 (decimal) and $B = 11 (decimal).
The following Appendix Sections include:

1. A BASIC program which will perform hexadecimal to decimal and decimal to hexadecimal conversions for
numbers in the range #—65535 (decimal).

2. A look up table for quick hexadecimal-decimal conversions.

3. Memory maps for the Challenger 1P in the standard BASIC-in-ROM configuration and for the two disk based
configurations: PICO DOS and 0S-65D.

The memory maps describe the manner in which the memory is partitioned for different purposes within each
configuration.

Each of these memory maps show that BASIC-in-ROM is stored at memory locations $A@PP—$BFFF or 40960 —
49151 (decimal). The video display is assigned memory in the region labeled video RAM located at addresses
$DPPP—SD3FF or 53248 —54271 (decimal). Compare the video memory maps on pages 44 and 45 in Section Nine.

> REM THIS PROGRAM CONVERTS NUMBERS (DEC> HEX and HEX>DEC)
1@ FORSC=1 TO 3@: PRINT: NEXT
20 PRINT*1) CONVERT HEX TO DECIMAL": PRINT
30 PRINT*“2) CONVERT DECIMAL TO HEX": PRINT
49 INPUT “WHAT IS YOUR CHOICE (1 OR 2)""; CHOICE
45 FORSC=1 TO 3@: PRINT: NEXT
5@ IF CHOICE=1 THEN GOSUB 1¢0@
60 IF CHOICE=2 THEN GOSUB 200@
70 GOSUB 3¢0@
100@ REM HEX TO DECIMAL, CONVERT EACH CHAR. TO ASCII FIRST
1210 INPUT “YOUR HEX NUMBER IS": A$
1020 L=LEN(A$) : SUM=p
1060 FOR K=1TOL
1070 M=L+1-K
1080 T2=ASC(MID$(A$,M,1))
1100 S1=SUM+164 (K—1)*(T2—55)
1110 S2=SUM+16 4 (K—1)*(T2—48) : REM SHIFT N IS A 4
1130 IF T2> 64 THEN SUM=S1 : REM CHECK IF HEX CHAR> 9
1140 IF T2 <64 THEN SUM=S2 : REM OR <9

1150 NEXT K

1160 PRINT “DECIMAL VALUE IS ”; SUM ,
117@ PRINT: INPUT “DO YOU WANT TO CONVERT ANOTHER HEX NUMBER (Y/N)"; B$ ‘
1180 PRINT: IFLEFT$(B$,1)= “Y” THEN 1000

1199 GOTO 5

20@@ REM DECIMAL INPUT WITH HEX OUTPUT

201¢ INPUT*“YOUR DECIMAL NUMBER IS ”'; D

2030 T(@)=D

2049 FORI=1TO 8 [
2050 T()=INT(T(1—1)/16) : CI(N=T(—1)—-TN*16 : K=I |
208@ IF INT(T())=@ THEN GOTO 2200

2090 NEXT |

220@ FOR I=1 TO K

2219 REM REVERSE ORDER OF DIGITS FOR PRINTING
222¢ CH$(K+1—1)=CHR$(48+ClI(l))

2230 IF CI(l)> 9 THEN CH$(K+1—1)=CHR$(55+CI(l))
2240 NEXT |

2250 ZIP$=""

2260 FORI=1 TO K: ZIP$=ZIP$+CHS(I): NEXTI

229 PRINT “THE HEX EQUIVALENT IS ”; ZIP$: PRINT
2300 INPUT “DO YOU WANT TO CONVERT ANOTHER DECIMAL NUMBER (Y/N)"; C$ ‘
2310 PRINT: IFLEFT$(C$,1)= “Y" THEN 2009

2330 GOTO 5

3009 PRINT “YOUR CHOICE SHOULD BE 1 OR 2" |
3010 PRINT “PLEASE TRY AGAIN": GOTO 5

3030 END

ko’ ok ks ki

O~ NP ONY—
OOOOODOOS

SCa—
(@511 <o)
o000

APPENDIX 3

HEXADECIMAL-DECIMAL CONVERSION

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8]
17 18 19 20 21 22 23 24 25
33 34 35 36 37 38 39 40 41
49 50 51 52 53 54 55 56 57
65 66 67 68 69 70 71 72 73
81 82 83 84 85 86 87 88 89
97 98 100 101 102 103 104 105
113 114 115 116 117 118 119 120 121
129 130 131 132 133 134 135 136 137
145 146 147 148 149 150 151 152 153
161 162 163 164 165 166 167 168 169
177 178 179 180 181 182 183 184 185
193 194 195 196 197 198 199 200 201
209 210 211 212 213 214 215 216 217
225 226 227 228 229 230 231 232 233
241 242 243 244 245 246 247 248 249
257 258 259 260 261 262 263 264 265
273 274 275 276 277 278 279 280 281
289 280 291 292 293 204 295 296 297
305 306 307 308 309 310 311 312 313
321 322 323 324 325 326 327 328 329
337 338 339 340 341 342 343 344 345
353 354 355 356 357 358 359 360 361
369 370 371 372 373 374 375 376 377
385 386 387 388 389 390 391 392 393
401 402 403 404 406 406 407 408 409
417 418 419 420 421 422 423 424 425
433 434 435 436 437 438 439 440 441

HEXADECIMAL-DECIMAL CONVERSION

0 1 2 3 4 5 6 7 8 9 A B (04 D E F !
400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 [
450 1104 1105 1106 1107 1108 1108 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
480 1152 11563 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C0 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4ED 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1283
4F0 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 i

HEXADECIMAL-DECIMAL CONVERSION

HEXADECIMAL-DECIMAL CONVERSION

0 1 2 3 4 5 6 7 8 9 A B C D E F
EOQ 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3656 3657 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
ESQ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6Q 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E80 3712 3718 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
EQ0 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAQ 3744 3745 3746 3747 3748 3749 3750 3751 3762 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 l
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEOQ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 |
EFOD 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 \
I
FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3B53 3854 3855 |
F10 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 ’
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F40 3904 3905 39 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3036 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
FS0 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAQ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 40686 4067 4068 4069 4070 4071 4072 4073 4074 7075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4088 4090 4091 4092 4093 4094 4095

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE ‘

HEXADECIMAL DECIMAL |
01000 4096
02000 8192
03000 12288
04000 16384
05000 20480
06000 245786
07000 28672
08000 32768
09000 36864
0AQ00 40960
0B000 45056

00 49152
0DO00 53248
OE00D 57344
OF000 61440
10000 65536
11000 69632
12000 73728
13000 77824
14000 81920
15000 86016
16000 90112
17000 94208
18000 98304
19000 102400
1A000 106496
1B00D 110592
1C000 114688
1D000 118784
1E000 122880
1F000 126976

20000 131072

APPENDIX 4
MEMORY MAPS

CHALLENGER 1P MEMORY MAP (BASIC-IN-ROM CONFIGURATION)

0900 —PPFF Page Zero
P19p—P1FF Stack
*@130 NMI Vector
*P1Co IRQ Vector
@200—@221 BASIC Flags and Vectors
9203 LOAD Flag
*0205 SAVE Flag
*P218 Input Vector
*021A Output Vector
*P21C Control C Check Vector
*@21E LOAD Vector
*0220 SAVE Vector
0222 —@2FA Unused
300 end of RAM BASIC Workspace
APPd—BFFF BASIC-in-ROM
D@pp—D3FF Video RAM
DFp@ Polled Keyboard
Fpop—Fpo1 ACIA Serial Cassette Port
F8p9—FBFF ROM
FCPP—FCFF ROM —Floppy Bootstrap
FD@@—FDFF ROM—Polled Keyboard Input Routine
FE@P—FEFF ROM—65V Monitor
FF@@—FFFF ROM—BASIC Support
*FFFA NMI Vector
*FFFC Reset Vector
*FFFE IRQ Vector
CHALLENGER 1P MEMORY MAP UNDER P-DOS
0000 —PPFF Page Zero
¢190—01FF Stack
*@139 NMI Vector
*01Cp IRQ Vector

74

P209—0221
*0203
*P205
0218
*021A
*921C
*021E
*P220

0222—P2FA

@2FB—20FF

—22FA
23pp—317D
317E—3FFF

4909 —TFFF

APPP—BFFF
Cppg—Cop3
Cp19—Cp11
D@pp—D3FF
DF¢p
Fpp0—Fp@1
F8¢0—FBFF
FCP@—FCFF
FD@)—FEFF
FF@@—FFFF
*FFFA
*FFFC
*FFFE

PP0P—PPFF
019Pp—P1FF
*p139
*P1CP
P20p—0221
9200—22FA

23p0—317D

BASIC Flags and Vectors
LOAD Flag

SAVE Flag

Input Vector

Output Vector

Control C Check Vector
LOAD Vector

SAVE Vector

Unused

P-DOS Workspace Pointers
BASIC Workspace Under P-DOS (8K)
P-DOS

Free

End of 16K

Free

End of 32K
BASIC-in-ROM

Floppy PIA

Floppy ACIA

Video RAM

Polled Keyboard

ACIA Serial Cassette Port
ROM

ROM —Floppy Bootstrap
ROM—65V Monitor
ROM—BASIC Support
NMI Vector

Reset Vector

IRQ Vector

CHALLENGER 1P MEMORY MAP UNDER 65DV3

Page Zero

Stack

NMI Vector

IRQ Vector

BASIC Flags and Vectors

Transient Processor Area Under 65DV 3 for 9 Digit BASIC Assembler/

Editor
65DV3 Drivers

75

317E—3FFF

4999 —TFFF

APPP—BFFF
CPpp—Cop3
CP19—CP11
D@p@—D3FF
DFp@
Fopo—Fpa1
F809— FBFF
FCPp—FCFF
FD@Y—FDFF
FEP@—FEFF
FFP@—FFFF
*FFFA
*FEFC
*FFFE

Free

End of 16K 65DV3

Free Object Code Workspace
End of 32K

BASIC-in-ROM

Floppy PIA

Floppy ACIA

Video RAM

Polled Keyboard

ACIA Serial Cassette Port

ROM

ROM —Floppy Bootstrap

ROM —Polled Keyboard Input Routine
ROM—65V Monitor

ROM—BASIC Support

NMI Vector

Reset Vector

IRQ Vector

APPENDIX 5
CONTROL REGISTERS

Memory location 55296 (address D8@@ in hexadecimal) is reserved as a control register. This location is ‘“‘write
only,” that is the user can POKE values into this location but cannot PEEK to determine the last value stored. This
register is used to control the output from the DAC, the display mode on the screen and to enable color (on units
equipped with the 63@ I/O Expander). The following table lists the allowable POKEs at location 55296 and their
effects:

VALUE SCREEN COLOR DAC SOUND
/) 24 X 24 DISABLED DISABLED
1 12 X 48 DISABLED DISABLED
2 24 x 24 ENABLED DISABLED
3 12 x 48 ENABLED DISABLED
16 24 x 24 DISABLED ENABLED
17 12 X 48 DISABLED ENABLED
18 24 x 24 ENABLED ENABLED
19 12 X 48 ENABLED ENABLED

When the SWAP program is loaded from cassette in BASIC-in-ROM to allow the use of the 12 x 48 display
mode, the above POKEs should be made to memory location 251 instead of 55296.

For models of the CIP equipped with the 63@ I/0 Expander, memory location 63456 (address F7E@ in hex-
adecimal) is reserved as a control register. The value stored at this location controls the AC control interface, the
programmable divider and selects between the printer and modem port. The following table lists the allowable
POKEs at location 63456 and their effects:

VALUE AC CONTROL TONE GENERATOR PRINTER/MODEM
0] DISABLED DISABLED PRINTER
1 ENABLED DISABLED PRINTER
2 DISABLED ENABLED PRINTER
3 ENABLED ENABLED PRINTER
£ DISABLED DISABLED MODEM
5 ENABLED DISABLED MODEM
6 DISABLED ENABLED MODEM
7 ENABLED ENABLED MODEM

APPENDIX 6

0S-65D USER’S GUIDE

This section is intended to be used as a quick reference guide only for complete details on OS-65D please refer to

the OS-65D User’s Manual.

COMMANDS
ASM

BASIC
CALL NNNN=TT,S

DIR NN
EM

EXAM NNNN=TT

GO NNNN
HOME

INIT

INITTT
IO NN,MM

10 MM

IO NN

LOAD FILNAM
LOAD TT

MEM NNNN,MMMM

PUT FILNAM
PUTTT

RET ASM
RET BAS
RET EM
RET MON

SAVE TT,S=NNNN/P

Load the assembler and extended monitor. Transfer control to the assem-
bler. (Not present on all disks)

Load BASIC and transfer control to it.

Load contents of track, “TT” sector, “°S’” to memory location
CNNNN”.

Print sector map directory of track ““NN".

Load the assembler and extended monitor. Transfer control to the ex-
tended monitor. (Not present on all disks)

Examine track. Load entire track contents, including formatting informa-
tion, into location ““NNNN™’.

Transfer Control <GO> to location “NNNN",

Reset track count to zero and home the current drive’s head to track
Zero.

Initialize the entire disk, i.e., erase the entire diskette (except track @)
and write new formatting information on each track.

Same as ““INIT”, but only operates on track ““TT"".

Changes the input [/0O distributor flag to ““NN”’, and the output flag to
ECMMQ\.

Changes only the output flag.

Changes only the input flag.

Loads named source file, ““FILNAM’ into memory.

Loads source file into memory given starting track number “TT"".

Sets the memory I/0 device input pointer to “NNNN"’, and the output
pointer to “MMMM”".

Saves source file in memory on the named disk file “FILNAM.”
Saves source file in memory on track “TT"", and following tracks.
Restart the assembler. (Not present on all disks)

Restart BASIC.

Restart the Extended Monitor. (Not present on all disks)

Restart the Prom Monitor (via RST vector).

Save memory from location “NNNN"" on track “TT"” sector ““S™ for
“P”" pages.

78

SELECT X Select disk drive, ““X’” where ““X"" can be, A, B, C, or D. Select
enables the requested drive and homes the head to track @.

XQT FILNAM Load the file, ““FILNAM’" as if it were a source file, and transfer
control to location $327E.

NOTE:
—Only the first 2 characters are used in recognizing a command. The rest up to the blank are ignored.
—The line input buffer can only hold 18 characters including the return.
—The DOS can be reentered at 9543 ($2547).
—File names must start with an *“A”’ to “‘Z’” and can be only 6 characters long.
—The dictionary is always maintained on disk. This permits the interchange of diskettes.

—The following control keys are valid:

CONTROL—Q continue output from a CONTROL - §
CONTROL—S Stop output to the console
CONTROL—U delete entire line as input

SHIFT—-0 delete the last character (polled keyboards)
SHIFT—P delete entire line as input (polled keyboards)
MEMORY ALLOCATION

PpP—22FF BASIC or Assembler/Extended Monitor
220p—22FE Cold start initialization on boot
2300—265B Input/Output handlers

265C—2A4A Floppy disk drivers

2A4B—2E78 0S-65D V3.0 Operating system kernel ,
2E79—2F78 Directory buffer

2F79—3178 Page §/1 swap buffer

3179—3278 DOS extensions
3279-327D Source file header
327TE— Source File

DISKETTE ALLOCATION

p—1 0S-65D V3.{N bootstrap-loads to $2200 for 8 pages).
2—6 9-1/2 Digit Microsoft BASIC.

7-9 Assembler-Editor (if present)

10—11 Extended Monitor (if present)

12 Sector 1—Directory, page 1.

Sector 2— Directory, page 2.
Sector 3—BASIC overlays.
Sector 4—GET/PUT overlays.

13 Track@/Copier utility (loads to $8200 for 5 pages).
14—38 User programs and OS-65D utility BASIC programs.

39 Compare routine, on some disks only.

170 FLAG BIT SETTINGS
INPUT:

Bit #— ACIA on CPU board (terminal).

Bit 1 —Keyboard on 540 board.

Bit 2—UART on 550 board.

Bit 3—NULL.

Bit 4—Memory input (auto incrementing).

Bit 5—Memory buffered disk input.

Bit 6—Memory buffered disk input.

Bit 7—550 board ACIA input. As selected by index at location $2323 (8995 decimal).
OUTPUT:

Bit @— ACIA on CPU board (terminal).

Bit 1—Video output on 54@ board.

Bit 2—UART on 550 board.

Bit 3—Line printer interface.

Bit 4—Memory output (auto incrementing).

Bit 5—Memory buffered disk output.

Bit 6—Memory buffered disk output.

Bit 7—550 board ACIA output. As selected by index.

9 DIGIT BASIC EXTENSIONS

INPUT # (DEVICE NUMBER) (input is set to new device, output is set to null device. If
device number > 3, null inputs are ignored.

INPUT “TEXT”;# (DEVICE NUMBER) (print “TEXT" at current output device, then function as
above).

PRINT # (DEVICE NUMBER): (print output for this command at new device).

LIST # (DEVICE NUMBER) (list program or segments of program to new device).

WHERE (DEVICE NUMBER) FOR OUTPUT IS:
1—ACIA terminal

2—540 video terminal
3—550 ACIA UART port

4—Line printer

5—Memory output

6—Memory buffered disk output (bit 5).
7—Memory buffered disk output (bit 6).
8—550 ACIA output

9—Null output

(DEVICE NUMBER) FOR INPUT IS:

1 —ACIA terminal

2—540 keyboard

3—550 ACIA UART port

4—Null device

5—Memory input

6—Memory buffered disk input (bit 5).
7—Memory buffered disk input (bit 6).
8—550 ACIA input

9—Null Input

EXIT Exit to 0S-65D V3. N

RUN (STRING) Load and run file with name in (STRING).

DISK | (STRING) Send (STRING) to 0S-65D V3. N as a command line.

DISK OPEN, (DEVICE), (STRING) Open sequential access disk file with file name,
(STRING) using memory buffered disk 1/0 distributor \
device number 6 or 7. Reads first track of file to memory
and sets up the memory pointers to start of buffer.

DISK CLOSE, (DEVICE) Forces a disk write of the current buffer contents to cur-
rent track.

DISK GET, (RECORD NUMBER) Using last file opened on the LUN (logical unit number) 6
device, a calculated track is read into memory. Where that
track is: INT (REC.NUM)/24+base track given in last
open command.

DISK PUT It also sets both memory pointers to: 128*(REC. NUM.)

—INT(REC. NUM.)/24))+base buffer address for LUN
6 device. Write device 6 buffer out to disk. The effect is
the same as a “‘DISK CLOSE,6"".

EXTENSIONS TO ASSEMBLER (Available As An Option)

For more details refer to the OSI Assembler Editor and Extended Monitor Reference Manual.

E Exit to 0S-65D V3.N

H(HEX NUM) Set high memory limit to (HEX NUM).

M(HEX NUM) Set memory offset for A3 assembly to (HEX NUM).

[(CMD LINE) Send (CMD LINE) to 0S-65D V3 as a command to be executed and

then return to assembler.

81

CONTROL-I

CONTROL-C

Tab 8 spaces. Also:
CONTROL-U 7 spaces.
CONTROL-Y 6 spaces.
CONTROL-T 5 spaces.
CONTROL-R 4 spaces.
CONTROL-E 3 spaces.

Abort current operation.

EXTENDED MONITOR (Available As An Option)

For more details refer to the OSI Assembler Editor and Extended Monitor Reference Manual.

ITEXT
@NNNN

A

BN,LLLL

Cc

DNNNN,MMMM

EN

EXIT
FNNNN,MMMM=DD
GNNNN
HNNNN,MMMM (OP)

MNNNN=MMMM,LLLL

NHEX)NNNN,MMMM

6]
P

Send “TEXT” to OS-65D V3 as a command.
Open memory location “NNNN’ for examination.
Subcommands:

LF—Open next location.
CR—Close location.

DD —Place “DD” into location.
»’—Print ASCII value of location.
/—Reopen location.
Uparrow—OQOpen previous location.

Print AC from breakpoint.

Place breakpoint ‘““N** (1-8) at location, “LLLL”".
Continue from last breakpoint.

Dump memory from *“NNNN”’ to “MMMM"’.

Eliminate breakpoint “N”’.

Exit to OS-65D V3. N

Fill memory from ‘“NNNN”’ to “MMMM”’ —1 with “DD"’.
Transfer control to location “NNNN’.

Hexadecimal calculator prints result of “NNNN”’(OP)“MMMM”’
where (OP) is + — * /.

Print break information for last breakpoint.
Print stack pointer from breakpoint.
Load memory from cassette.

Move memory block “MMMM”’ to ““LLLL” —1 to location “NNNN"'
and up in memory.

Search for string of bytes ““HEX’* (1-4) between memory location
‘NNNN’* and “MMMM*’-1.

Print overflow/remainder from hex calculator.

Print processor status word from breakpoint.

82

QNNNN Disassemble 23 lines from location ‘“‘NNNN"". A linefeed continues
disassembly for 23 more. {

RMMMM=NNNN,LLLL Relocate “NNNN”" to ““LLLL”—1 to location ‘““MMMM”

SMMMM,NNNN Save memory block, “MMMM” to “NNNN"—1 on cassette.

T Print breakpoint table.

v View contents of cassette.

WTEXT) MMMM,NNNN Search for ASCII string “TEXT”’ between ‘‘MMMM’” and
“NNNN"—1

X Print X index register from last break.

Y Print Y index register from last break.

NOTE: All commands are line buffered by OS-65D. Thus only 18 characters per line are allowed and CONTROL-U
and BACKARROW apply.

SOURCE FILE FORMAT

RELATIVE DISK MEMORY

ADDRESS ADDRESS USAGE

/] $3279 Source start (low)

1 $327A Source start (high)

2 $327B Source end (low)

3 $327C Source end (high)

4 $327D Number of tracks req.
Sand on . . . $327 and on .. Source text

DIRECTORY FORMAT

Two sectors (1 and 2) on track 12 hold the directory information. Each entry requires 8 bytes. Thus there are a
total of 64 entries between the two sectors. The entries are formatted as follows:

@-5 ASCII 6 character name of file
6 BCD first track of file
7 BCD last track of file (included in file).

TRACK FORMATTING

The remaining tracks are formatted as follows:
— 1@ millisecond delay after the index hole
— a 2 byte track start code, $43 $57
— BCD track number
— a track type code, always a $58

There can be any mixture of various length sectors hereafter. The total page count cannot exceed 8 pages if more
than one sector is on any given track.
—Each sector is written in the following format:

—previous sector length (4 if none before) times 8(¢) microseconds of delay

—sector start code, $76

83

. . U
—sector number in binary
—sector length in binary

—sector data

DISKETTE COPIER

The diskette copy utility is found on track 13, sector 1. It should be loaded into location 200 with a ““‘CA 9200 =

13,1. To start it, type ““G@@200."" To select the copier type a **1.”" Destination disks must be initialized prior to copy-
ing. This is normally used only on computers with two disk drives.

TRACK @ READ/WRITE UTILITY |

This utility permits the reading of data on track @ anywhere into memory. Also the capability is available to write '
any block of memory to track @ specifying a load address and page count. The track zero format is as follows: i

—10 millisecond delay after the index hole l

—the load address of the track in high-low form

—the page count of how much data is on track zero

APPENDIX 7
DOS ERROR MESSAGES

CODE MEANING
Cannot read sector (parity error)

Cannot write sector (reread error)

Track zero write protected against that operation
Disk is write protected

See error (track header does not match track)
Drive not ready

Syntax error in command line

Cannot find track header within one rev of disk
Cannot find sector before one requested
Bad sector length value

1

2

3

4

5

6

7

8 Bad track number
9

A

B

L Cannot find name in directory
D

Read/Write attempted past end of named file

BS
CN

DD

FC
ID

LS
NF
oD
oM

BASIC-IN-ROM ERROR CODES

DD

FC

1D

NF

0D
OM

ov
SN

RG

/9
CN

LS
0s

ST
™

UF

CODE

D g Double Dimension: Variable dimensioned twice. Remem-

F _,.l'" Function Call error: Parameter passed to function out of

N/

== 4 4 4 LLI’-"'LIL-I\.

U ™y Undefined Function

DEFINITION

ber subscripted variables default to dimension 10.

range.

Ilegal Direct: Input or DEFIN statements can not be used
in direct mode.

NEXT without FOR:
Out of Data: More reads than DATA

Out of Memory: Program too big or too many GOSUBs,
FOR NEXT loops or variables

Overflow: Result of calculation too large for BASIC.

Snytax error: Typo, elc.

RETURN without GOSUB

Undefined Statement; Attempt to jump to non-existent
line number

Division by Zero

Conltinue errors: atlempt to inappropriately continue from
BREAK or STOP

Long String: String longer than 255 characters
Out of String Space: Same as OM
String Temporaries: String expression too complex.

Type Mismatch: String variable mismatched to numeric
variable

DISK BASIC ERROR CODE TABLE

Bad Subscript: Matrix outside DIM statement range, etc.

Continue Errors: Attempt to inappropriately continue from BREAK
or STOP.

Double Dimension: Variable dimensioned twice. Remember sub-
scripted variables default to dimension 10.

Function Call Error; Parameter passed to function out of range.

Illegal Direct: INPUT and DEFIN statements cannot be used in
direct mode.

Long String: String longer than 255 characters.
NEXT without FOR.
Out of Data: More reads than data.

Out of Memory: Program too big or too many GOSUBs, FOR-NEXT
loops or variables.

86

0s
ov
RG
SN
ST
™
UF
us

9

Qut of String Space: Same as OM.

Overflow: Result of calculation too large.

RETURN without GOSUB.

Syntax Error: Typo, etc.

String Temporaries: String expression too complex.

Type Mismatch: String variable mismatched to numeric variable.
Undefined Function.

Undefined Statement: Attempt to jump to nonexistent line
number.

Division by Zero.

APPENDIX 8
FLOPPY DISK CARE

The floppy diskettes and disk drives are delicate pieces of hardware, and should be treated as such. The following
rules are strongly recommended to maintain their good condition.

HANDLING FLOPPY DISKETTES

& W N =

e 1 o W

10.

11.
12.

Do not touch the surface of the diskette or allow any dirt or dust to come into contact with the surfaces.
Be very careful in labeling diskettes, so as not to damage them.
Do not bend or fold the diskette.

Store the diskette only at temperatures from 10° to 125° F. (—18°to 51° C.) and only use a diskette in a drive
if both are at the same temperature.

Do not allow magnets to come near the diskette.
Always place the diskette in its jacket and store it upright in its box when not in use.
If you must lay a diskette on a table, place it with the label side down, to avoid damaging the recording side.

When inserting a diskette in a drive, insert it carefully with both hands and an even pressure, until you hear a
click. Make sure that it has not come back out slightly before you close the drive.

Do not try to clean the surface of the diskette.

Turn on the power to your computer before you insert the diskette, and turn power off only after you remove
the diskette. Never turn the power on or off while the diskette is in the drive.

Insert the diskette in the disk drive with the label side up.

Use only 100% certified single index hole diskettes, such as the ones which OSI offers.

HANDLING DISK DRIVES

1.
2.

The disk drive should only be turned on or off when the computer is already on.

Diskettes should be inserted in the drive after the drive has been turned on, and removed before it is turned
off.

Do not obstruct the air flow in the rear of the disk drive.

Disk drives and diskettes will not operate in very high or very low humidity environments. Air conditioning is
generally not required unless the unit is operated in a basement, or other area where condensed moisture is
likely to occur. RUGS AND CARPETING IN THE VICINITY OF THE COMPUTER SHOULD BE
TREATED FOR ANTI-STATIC.

The disk drive, being a mechanical rotational device, is susceptible to line voltage and line frequency varia-
tions. The unit must be operated at 6@ Hz for write operations to work.

. The floppy disk system is mechanical, and thus subject to wear on pulleys, belts, bearings, etc. It is a good
practice to remove diskettes from disk drives when disk operations are not anticipated during the next hour
or so. Also, turn off disk drives when not in use for prolonged periods of time.

| APPENDIX 9
CHARACTER GRAPHICS AND VIDEO SCREEN LAYOUT

T]
i) i i

T
25 $19 26 $1A

]] I]
3 SRENEES
] | o EE]
2 g |
35 $23 36 %24 37 %25 38 $26 39 $27 40 %28
| I i I
] I I T i [N
O T - !
il L] | [
42 $2A 43 %$2B 44 $2C 45 $2D 46 $2E 47 $2F
H H H
I]]
1]] I]
1] | 1
49 $31 50 $32 51 $33 52 $34 53 $35 54 $36
- ﬁ [T] |8 DE =
[H H Tl H
56 $38 57 $39 58 $3A 60 $3C 61 $3D
i : %E Bl : E
u] T =
]] o
63 $3F 64 $40 65 $41 66 $42 67 $43 68 $44
| | ﬁ i : |
] R o
Pl o 5 |
] N r]]
70 %46 71 $47 72 $48 73 $49 74 $4A 75 $4B

41 829

il i T

48 $30

I BEEE

556 $37

1T

I
1

|)

HI

62 $3E

=}

T

69 9$45

L

76 $4C

84 $54

91 $5B

T 111

98 $62

1]

1

BE S

] B 5 O Y

105 $69

| i i

11

112 870

80 $50 81 $51 82 $52 83 $53
85 $55 86 $56 87 $57 88 $58 89 $59 op $5A
T T T
L] I o
]] |] - o
T 1
92 $5C 93 $5D 94 $5E 95 $5F 96 $60 97 %61
K 5 5 T T]
I]
HHHH u mE B
99 $63 100 $64 121 $65 102 $66 103 $67 104 $68
] EEEES ! 0
= |]
106 $6A 107 $6B 198 $6C 199 $6D 110 $6E 111 $6F
T T T RS T
]] []
113 $71 114 $72 115 $73 116 $74 117 $75 118 $76

91

i W]

INE NN

11

n
—
©w
-.4
© O Erd

[TTTT]

119 $77 120 %78 122 $7A
T il O
T | |

. H

[T 1
126 $7E 127 S7F 128 $80 129 $81
133 $85 134 $86 135 $87 136 $88
140 $8C 141 $8D 142 $8E 143 $8F
147 $93 148 $94 150 $96
154 $9A 155 $9B 156 $9C 157 $9D

92

[TTTT]

123 $7B

_—

[1

124 $7C

125 $7D

L

1390 $82

137 $89

144 $90

151 $97

EEEE]
EEEE |

158 $9E

131 $83 132 %84
138 $BA 139 $8B
145 $91 146 $92
152 $98 153 $99
159 $9F 160 $AQ

161 $A1

168 $A8

11

1
175 $AF

182 $B6

189 $BD

il nii

196 $C4

162 $A2

169 $A9

176 $BD

183 $B7

190 $BE

Beecct

197 $C5

163 $A3

170 $AA

177 $B1

:

184 $B8

191 $BF

198 $C6

L4

164 $A4 165 $AS5 166 $A6 167 $A7
[] N EEE| EEET
EIE il i S | RS
171 $AB 172 $AC 173 $AD 174 $AE
1 i | I I 1
I | | il 1
178 $B2 179 $B3 180 $B4 181 $B5
i |
185 $B9 186 $BA 187 $BB 188 $BC
1
I =
1 HL
192 $CQ 193 $C1 194 $C2 195 $C3
|
|
199 $C7 200 $C8 201 $C9 202 $CA

93

2p3 $CB

204 $CC

219 $D2 211 $D3

217 $D9

218 $DA

1 I
224 SBEQ 225 $E1

231 232 S$ES8

205 $CD

212 $D4

219 $DB

226 $E2

h

233 $E9

206

213

$CE

$D5

220

$DC

227

234

$E3

SEA

207 $CF

208 $DP

209

$D1

214 $D6 215 $D7 216 $D8
221 $DD 222 $DE 223 $DF
228 %E4 229 SBES5 230 $E6
235 $EB 236 $EC 237 $ED

245 $F5

246 $%F6

247 $F7

il i i

)
248 $F8 249 9%F9 250 S$FA 251 $FB

252 $FC

253 $FD

|
W EE T

I[IH‘

254 $FE

255 SFF

APPENDIX 10
POKE LIST-CIP DISK BASIC

As systems develop, different locations are committed to hold parameters. Many of these parameters have been
mentioned in the text material. These parameters are collected here, along with some other useful parameters
which may be needed by an advanced programmer. Some parameters appear several times, since they are relabeled
by other utility programs.

Caution, care must be taken when POKEing any of these locations to avoid system errors and subsequent soft-
ware losses.

LOCATION NORMAL .
DECIMAL HEX CONTENTS USE

23 17 132 Terminal width (number of printer characters per line). The
default value is 132. Note, this is not to be confused with the
video display width (64 characters).

24 18 112 Number of characters in BASIC's 14 character fields (112
characters = 8 fields) when outputting variables separated by
commas.

120 78 127 Lo-Hi byte address of the beginning of BASIC work space (note

121 79 50 127=8%7F, 50=%32).

132 84 * Lo-Hi byte address of the end of the BASIC work space. (*con-

133 85 i tents vary according to memory size such as 255($FF) and 95

($5F) for $5FFF =24575 for 24K)

222 DE 1)} Location to enable or disable RTMON (real time monitor). 1 en-
ables and @ disables RTMON.

223 DF 1) Location to start count down timer. A 1 starts the timer,and a @
stops it.

224 EQ @ Contains the number of hours for timer to count down.

225 E1)] Contains the number of minutes to count down.

226 E2 @ Contains the number of seconds to count down.

230-241 E6-F1 1) Identifies the I/O masks used for external polling of AC events,
i.e. determines which PIA lines are scanned.

249 F9 1] Should contain the latest value at 56832 ($DE@®) which is a
“write only” register. This location does not change the display
format but acts to maintain the format during ACTL use.

548 224 - Hi-Lo byte address for AC driver; with no buffers these loca-

549 225 — tions (with AC enabled) will contain $327F

741 2E5 10 Control location for “LIST"”. Enable with a 76, disable with a 1@.

750 2EE 10 Control location for “NEW”. Enable with a 78, disable with a 1Q.

1797 705 32 Controls line number listing of BASIC programs, enable with a
32, defeat with a 44,

2073 819 173 “CONTROL C" termination of BASIC programs. Enable with
173, disable with 96.

2200 898 — The monitor ROM directs Track @ to load here at $2200.

2888 B48 27 A 27 present here allows any null input (carriage return only) to
force into immediate jumping out of the program. Disable this
with a @. Location 8722 must also be set to @.

2893 B4D 55 Alternate “break on null input” enable/disable location. A null

2894 B4E 08 input will produce a “REDO FROM START” message when

2893 and 2894 are POKEd with 28 and 11 respectively.

96

LOCATION NORMAL
DECIMAL HEX CONTENTS USE

2972 BAC 58 Normally a comma is a string input termination. This may be
disabled with a 13 (see 2976).

2976 BAD 44 A colon is also a string input terminator, this is disabled with a
13 (see 2972).

8708 2204 41 Output flag for peripheral devices

8722 2212 27 Null input if=00, normal input if = 27

8902 22C6 [0 Determines which registers (less 1) RTMON scans (see the AC
control section).

8917 22D5 — USR(X) Disk Operation Code:

@—write to Drive A
3—read from Drive A
6—write to Drive B
9—read from Drive B

8954 22FA — Location of JSR to a USR function. Preset to JSR $22D4, i.e., set
up for USR(X) Disk Operation.
8960 2300 — Has page number of highest RAM location found on OS-65D’s

cold start boot in. This is the default high memory address for
the assembler and BASIC.

8993 2321 — I/O Distributor INPUT flag

8994 2322 — I/0O Distributor OUTPUT flag

8995 2323 — Index to current ACIA on 550 board. If numbered from 1 to 15
the value POKEd here is 2 times the ACIA number.

8996 2324 — Location of a random number seed. This location is constantly
incremented during keyboard polling.

2000 2328 7D Pointer to Disk Buffer

9p@1 2329 3E (Usually $3E7D)

9pp2 232A — First Track Disk 1

op@3 232B — Last Track Disk 1

9004 232C — Current Track in Buffer 1

9005 232D — Buffer 1 Dirty Flag (Clear=0)

Locations 90@6 to 9913 Pertain To Disk 2

9006 232E 7E Pointer to Disk 2 Buffer Start.

Aappa7 232F 3A This area used for Disk 2 data transfer operations. (Usually
$3a7E)

9p@8 2330 TE Pointer to Disk 2 Buffer End

9p@9 2331 42 (Usually $427E)

9p10Q 2332 — First Track Disk 2

9011 2333 — Last Track Disk 2

9p12 2334 - Current Track in Buffer 2

o9p13 2335 — Buffer 2 Dirty Flag (Clean=0)

9(p98 238A - Pointer to Memory Storage Input (Lo and Hi Byte). Memory is

9Q99 2388 — dedicated for use as file.

9105 2391 - Pointer to Memory Storage Output (Lo and Hi Byte). Use of

9106 2392 - memory as a file.

9132 23AC 7E Disk Buffer 1 Input Current Address (Lo and Hi Byte). Default

9133 23AD 32 value is $327E.

9155 23C3 7E Disk Buffer 1 Output Current Address (Lo and Hi Byte). Default

9156 23C4 32 value is $327E.

9213 23FD 7E Disk Buffer 2 Input Current Address (Lo and Hi Byte). Default

9214 23FE 3E value is $3E7E.

9238 2416 7E Disk Buffer 2 Output Current Address (Lo and Hi Byte). Default

9239 2417 3E value is $3E7E.

9368 2498 — Indirect File Input Address (Hi Byte) (Lo=00)

97

LOCATION NORMAL
DECIMAL HEX CONTENTS USE

9392 24B@ — 1/0 Status used by ACTRL.

9403 24BB — See AC control section.

9480 2508 - Real Time Clock, Hours

9481 2509 — Real Time Clock, Minutes

9482 250A — Real Time Clock, Seconds

9483 2508 — Real Time Clock, Days

9543 2547 - Contents is hex DOS Entry Point. Under Machine Monitor Load
2547, then “GO".

9554 2552 — Pointer to Indirect File (Hi Byte only) for output (Lo=0@@)

9667 25C3 215 When POKEd with N (207-215) and a LIST command is given,
this will move the scroll up 4*(215-N) lines.

9682 25D2 95 Cursor symbol character designation, for video screen.

9880 2646 32 Display control parameters. Single Space=64; Double
Space=128; Quad Space=255; Two columns=32.

0822 265D - Sector for USR(X) on disk

0823 265F —_ Page Count for USR(X) Disk. Read or Write.

9824 2660 — Pointer to memory for USR(X). (Lo and Hi Bytes) USR(X) will re-

9825 2661 — side in location pointed to.

9826 2662 — Contains track number for USR(X) on disk

9976 26F8 — Disable “:” Terminator. See Location 2976 comments.

10950 2ACB 02 Console terminal number. Video terminal is 2.

11511 2CF7 — Used by Disk Page @/1 Swap Used by Random Access File

12042 2FDA — Calculation routines to set record size.

12921 3279 Start of work space header.

12922 327A If contains 32, then have no buffers

If contains 3A, then have 1 buffer:
If contains 42, then have 2 buffers

12925 327D Number of tracks to load from disk.
15997 3E7D Disk 1 Buffer End
15998 3E7E Disk 2 Buffer Start
19069 4A7D Disk 2 Buffer End
50944 C700 OS] BUS PIA
50948 C704 PIA register's location. See PIA section for use.
to to ‘
5(959 C70E
53381 D@85 Video screen memory storage. Video screen memory is 8 bit (1
byte) storage locations (24 x 24 format)
to to
54141 D37D
54405 D485 Video color image storage. Only 4 bits are available for use.
to to
55165 D77D
56832 DEQ® Screen Format (64 x 32 characters, or 32 x 32), sound, color
selected. See video section for POKEs.
57088 DFp@ Joystick A,B; Also Tone; Also Polled Keyboard location.
57089 DF @1 D/A Converter Port. (Also frequency divider rate) This location

can only be POKEd. See tone generation section.

98 .

LOCATION NORMAL
DECIMAL HEX CONTENTS USE

63232 F700 PIA Port address. Home security devices share this location
with normal PIA lines.
64512 FCOQ ACIA Port address. Printer and modem share this location.

A
ACControl 50-52,59,62,77
o\ O 71 = . I B o e COSRED 50
ABTTP S &g s vz o ns 5 655 swmn & % % 2 @ %1 8 swwn 5 50
Ateessory [HtErTace ;- ssocsmpaunns g a mmma 59
T 123 - OO E pet 64
ActionKey 44
Address (Memory)coovineaiean.. 4
Advanced
FEALHEGY < o v v osm wwn 2w 8 5 0 swEwem & o 5 & 08 3,4,60-63
TOPICE ;¢ 55 5 coss § 8 8 aE Q0 Fomei a6 885 8 o 3,4
T 190160075 o A (0] 1 1 R o e P e 51
Analog
O . 57,68
Appliance Control 50
AppHeations Program . « . .« .o v s s e s o 3.4
ol () () [SR 36
ASM(Asgsmbler) .ousinssiwwrmmassa 4,26,28,32
BUEOTTIN, .. . o morr woismo o mog s v s S5 5 S8 8 ¥ 8 o 29
B
Backpanel Connectors vvieniinnin 7-11
BASICCommands 14,18-21
BASIC Errors
BASIC-in-ROM (Cassette). 12,86
BASIC(Disk)ooooo.. 34,85,86,87
BASIC Extensions . .« .vvovivvnaus 30,37,41,42,81
BASIC FEatures = < 5 o v o gom s % 5 5 6 5 2 5 oewe s 55 8 18
BASIC Programming 12,18-21,23
Band MRALEY oo e o oo 5 5 5 osimie s i 0 e 5 0 0 5y ileE E H W A 64
Bit Switching and Sensing 51-55
BEXEGC :::cvenionvnmemommnes s ann e 31,32
Bk - o o o cowomam o w50 5 5 & ceoms s w55 8w e mee e s 22
BREAK :vooomnnmmmmasnmasmnesanssas 12-14,21
Breakpoiiil . . .ooiw o0 hs Semsng g e 40 8 woe 82,83
BUS, 16 PitT/D . o vovooms soimmie e o 5 8 5 65 % 56
BytesFree 12,14
C
BANE . o om0 5 e o 8 5 o 56,57
CA-20 .ot e 56,57

CA-21 e 50-52,57
CBEZD . i nom e o i 55 3 5 smwoss o b w0 s G 57,58
R o coimn o b o s 5 4 58 s Bt W B R a1 e B G 3 58
e e S L T T 59
BEBE s s DTS S e N R AR S &% 59
Calculator(Mode) 3
Cassette

BASIC-in-ROM 14

07511 2072 s o o S B 14

DataiSEGrage - = zunw cwmmnua 5w w8 & s 29,35

Bl i v o e 5 5 5 i 5 0 0 oo o % 8w @ B 0 e 15,35

SANE . . sas s U s S i ESEEEE SR E GV D D aeEe 29,35
ChangeUtiEY .. .« v vvvmeevm s g eo o i 16
Character Graphics 22-25
Characters (LowerCase) 36
Cloek, Timeof Dayccvvmuuouvnvonen 50,56
Code, Machine Language 26,27
Cold'SEATE o 2 v o ous w0 ss v s @ 2 5% 8 8 8 8w s @ % o 14
ColotGiaphies) 5 onsssszeasss o 60-62,77
Computer Setup

Cassette 6-11,26

s L T T Tl 6-11,14,17
Computer Interface to 16 Pin I/OBus 56
Conditional Statement « « -cumu v v s 05 w0 e s 21
CIOTHECHONS & 5 vs v v 5 5 w4 oEmoa o s ¥ 6 5 6 & & gmras 4 7-11
ControlC 13,36-38
Control@ 31,79
ControlS 31,79
Conversions

Digital to ANEl6E - - -« svenn s 2 v w8 2 v samewn 26-28

Hexadecimal to Decimal Chart 70-73
Copier, Diskette 84
Countdown Timer 50
CREATE ... 0 o0 o 0 v 0 simmoncs s st 0 5 w0 w0 vt simloss 10 31-33

D

| A ol Tl WS g A B 26-28,60,62,63,77
Diata Register (PLIAY « « s v s cman i s s w0 s o s s 4 52
Default . oo cvemsysss s igs 30,41,52,96,97
MELETE fles) ¢cces 5538805 ses 31,33
Device Numbers 81
Digital to Analog Converter 26-28,60,62,63
Dimension (DIM) 86
Directory

DB & oo st s s it g 5 5 @ smmniwt @ & % 5 16,17,31,32,79

Disk Directory Listing 17,32

FOEHAE . vonecmn s omm s GMER G55 5885 8 5% 32,83

Disk Hexadecimal to Decimal

Allocations 80 Tablesot 70-73
BASIC Commands 34,35,41,42,78 Tutor and Conversion 66-73
CBPOIOE o oo o now s om s w et 6 B B BB B R e 30,88 Home Seeuriby uo v avwmnin e o s ap s o s 50
BRCOREIONS =« o2 v o v ncaam g % & 2 2 9 0 5 ssmam @ 80,81
OrPaniZation. s s s s nssmma a8 8y 5 o dmEe 32,33
Read/Write 30,31
Track Formatting 32,33,83
Track () Read/Write 84 I
LTETIETOR & s o o= o Bl ol sovsombions 340 6 0 w0 8 5 55 isrsert 32-35
DOS (disk operating system) 30,35 Imediate Mode: . commsvvssas s samnssss oy o 3
COMMENAS . s iesnamnas328s 8§ somns 30-35 INPUT Statement. 19,30
Errors(ERR) 31,34,86,87 Initialize (BASIC-in-ROM) 12,14
I/O (input/output)
ATERNGE & x u a s 0 5 o & swman v 6 % 26 5 R et s 26,57
|) g 0 40 3 5 1 0) el 8) it 1 2 65 61 B T £ 3 41,42
Parallel ; oo ouow v smmm i cn e s s o ssmms i s s s 56
E Flag Bit, Settings 80
Edit 18
EndlessLoop 220
Error. 31,34,85-87
BASICAn-ROM 86 J
MEEBASIE - uvssnsnsmmmnasonssas 35,86,87
DOS ; vinocomn g2 s 5059 s 605§ 85 g w o 85 JOFSECKE! o v om s o 5 5w 0w @ n s s s 44-47
INTIDBES v 6 h s NP R B R 7B S 55) STaRE B o 85
EXIT . . 35
Extensions to Disk BASIC 80,81
External Switches 51 K
HeybBaBa] < « x swom a s om 5o 0 s we m s 13,36-40
Rl iDOB) & cocovrnn s 5 0 5 0 n s @ 0w s 0 Ta wllbB) 35
F KoFDHEdS o o o v e 5w 0w w5 comasan w6 0 00w 2 s 48,49
Files 0 4,17,80.35
CEEATE . .coxnius s om0 owmom s xmms o s 31-33
DELIETE 5 s n i s oo s e w66 6 3 s 33,34 L
Namet,oc 65058 csamananksidaame 32-34
Flag Bit Setting, /O 80
Library (Program)« ..ucowennnq 3,4,10,15
Line Numberingcu oo www s vomitineseos 18-24
LIOAD, sonvusssmmamssnze 656w 15,16,29,30,34
LASE ocic s ssnassnoaman %6385 5 3¢ 15,16,19,31,32,34
G Loops, Explanationof 20,21,23
Lower Case 36
Generator, Tone 62,63
GET(Disk) oo 81
Graphics 22-25,38,89-95
M
Machine Code (Language) 4,26,27,31
H Memory 3,4,65
DT, SR e T 22,74-76

Head ENd Cards: oo nowww v v s ompmres s i 6 4 5 8 8 s 56 MiCroprocessorooviiiinenoa 4,65

Mini-floppy TrackS' . s s o vawnaans sus i 32,33,80
MOGUITH ; ..., i n 67565 i HEEREEY TE S 8§ SenE 3.43
Modulator, RF 9
Monitor, MachineCode 4,14,31
Monitor, Video 9,65
Meonitor, Extended. . o« oo 0o owsmon v o v 0o s 79,82
N
NamiedFes . o . v cmenswne e wmomnd swss s on s 32-34
I o v o o st & e B BTl 14,15,18,19,31,45
O
N B A L I LI LY 31-35,78-84
08S-65D User'sGuide . . . :cvvvvnnvnnns o 35,78,79
Overview (CIPSystem). 4.5
P
PASBWOIE. < s s vuopnnaru s Te hoames s p a5 5N 32-34
BB oo s s o 0 1m0 st 8 o e e g B B 33
Peripherals 41-59
PIAData.ty 52
PICODOSc.c.........16,30
POKEsand PEEKs 4,23-27,29,37-40,60-63,77
POKE CLPDisk BASIC ccnvviiivunsa. 96-99
Polling (keyboard) 37,38
PRINT i 18,20,41,42
Printer 41-43
Program
APPHCALION < o oo n s w0 s w wsemre s w5 o8 0w s 3,4,10
LABTBEY w0 v oroms e wo @ s s owas e e s = 6 3,4,10,15
UGN s s s secunnsaresssvesniinneys 17,33-35
Prompt (Message) 12,14,16,18,31,35
PUT(DISK) i 32,81
R
RAM .. 3,4,65
Read/Write
Cassette 15,29,35
DHSR ¢ oo 5 o 0 3w 0 v 0w 3 0 0 i o o 6 B 4 31-34

Real Time

Claek ;. vcompansapereyiomanassashs 50,56,98
Remarks (REM) 18
Return 12,13,15,18
RF Modulator/Standard TV 9
RETURN BASIC(REBA) 35
I B s O - o e e o) e B 4,65
BUN ssssnmomentsingsnyoomeat aifs 15-17,32-34

S
SAVE . 30
Screen Width 25,77
Seroll 23,60,61
SCRTCH 23
SOCURIEN e v wovv o s m % % 5 0w ¥ S % 50
SO 55 s a5 sy oommmsss 2@ s L9 & seiea a 13,18,79
SRHEIBY 2 v o oo o erseens o o s o o oo ot o 13,18,79
Software 3
Source File Format 83
Sound 26-28,60-63
Special e s « « o cvivommmn s s v o was 5 o n s w v 13
Statement; BASIC uuiivvunoimmnanz 18,20
O A P s ek o W E e A ¥ DR E 26
Syntax (Error), 85-87
System Overview (C1P). 4,5
T
Telephone Interface 43
Terminal Communications43
Timer (countdown)50
Tone Generator 26,62,63
Tracks (Mini-floppy) « v oo vemun s <o 5 aswwwswn 32-34

POt - o s oo o w ooEn U B LS 588 5 Prosa 2 2 83

Tutor, Hexadecimal to Decimal 66-69
U

UNLOCK 16,17,31

USR(X)Function 27

Utility Programs: «.ocwuwmeom v cmmn i w s 17,31,33

102

A
VamaBlESi ci s wum »os s wam 3 v m e o s o s e o s 19, 20
Video
CIOTITTECHOTS i s 5 wios wes & 58« He D58 o e o iodid 5 9
Metnory: Mab: von o oo v v ian men 5 566 4 am & 22, 74-76
Screen Layout i 22, 23

103

Warm Start
Workspace

1333 S. Chillicothe Road - Aurora, OH 44202
Phone: [216] B31-5177

Printed in U.S.A.

C1P Users Manual

	C1P_Man00
	C1P_Man01
	C1P_Man02
	C1P_Man03
	C1P_Man04
	C1P_Man05
	C1P_Man06
	C1P_Man07
	C1P_Man08
	C1P_Man09
	C1P_Man10
	C1P_Man11
	C1P_Man12
	C1P_Man13
	C1P_Man14
	C1P_Man15
	C1P_Man16
	C1P_Man17
	C1P_Man18
	C1P_Man19
	C1P_Man20
	C1P_Man21
	C1P_Man22
	C1P_Man23
	C1P_Man24
	C1P_Man25
	C1P_Man26
	C1P_Man27
	C1P_Man28
	C1P_Man29
	C1P_Man30
	C1P_Man31
	C1P_Man32
	C1P_Man33
	C1P_Man34
	C1P_Man35
	C1P_Man36
	C1P_Man37
	C1P_Man38
	C1P_Man39
	C1P_Man40
	C1P_Man41
	C1P_Man42
	C1P_Man43
	C1P_Man44
	C1P_Man45
	C1P_Man46
	C1P_Man47
	C1P_Man48
	C1P_Man49
	C1P_Man50
	C1P_Man51
	C1P_Man52
	C1P_Man53
	C1P_Man54
	C1P_Man55
	C1P_Man56
	C1P_Man57
	C1P_Man58
	C1P_Man59
	C1P_Man60
	C1P_Man61
	C1P_Man62
	C1P_Man63
	C1P_Man64
	C1P_Man65
	C1P_Man66
	C1P_Man67
	C1P_Man68
	C1P_Man69
	C1P_Man70
	C1P_Man71
	C1P_Man72
	C1P_Man73
	C1P_Man74
	C1P_Man75
	C1P_Man76
	C1P_Man77
	C1P_Man78
	C1P_Man79
	C1P_Man80
	C1P_Man81
	C1P_Man82
	C1P_Man83
	C1P_Man84
	C1P_Man85
	C1P_Man86
	C1P_Man87
	C1P_Man88
	C1P_Man89
	C1P_Man90
	C1P_Man91
	C1P_Man92
	C1P_Man93
	C1P_Man94
	C1P_Man95
	C1P_Man96
	C1P_Man97
	C1P_Man98
	C1P_Man99
	C1P_Man99a
	C1P_Man99b
	C1P_Man99c
	C1P_Man99d
	C1P_Man99e

