Compiler General! Description
BK Version

The Compiler version 1.3 occupies 5.8 K and was originally written
on an 0S1 Superboard with 8K. The program is sized to run on machines
with 8K or more and will hove sufficient memory on an BK machine to
produce a Z page ob ject code. The compiler can produce relocatable
ob ject code and the USR(X) routine allows |inkage of these object codes
such that even on an Bk machine large machine language routines can be
generdted and used. -

Both +the object code location and the variable teble location are
chosen by the user, thus allowing multiple machine language routines to
ut,jlize the same or different variable tables. The ob ject code is stand
atone. It wuses 16 bit arythmetic stored LSB, MSB and uses the ACC for
the LSB ant the X register for the MSB. Only positive integers are used
but the user can vtilize two’ s complement to create dummy negative
integers. The Y register is used as the offset for the location of the
variables. The only working locations are the first 18 bytes in
variable table. Self modifying code is used for the PEEK, USR, and POKE
compilations. DBuring the first pass the line # s for GOTO and GOSUB are
stored as addresses for the JMP and JSR. Later this is replaced by the
absolute address using wvectors contained in the string variables L%,
L2%, ond L3%. The arithmetic routines are from William Barden’s beook
"How to Pregraom Microcomputers’, Howard W. Scms & Co., Indianapolis,
Indigna, 1877.

The code generated by the compiler is not as efficient as the
experienced programmer can write using assembly code, however it is much
psasier to have the compiler do the dirty werk than to dig up that dusty
Assemb!y Language routine and interface it to your other assembly code.
The speed has beesn compared to the interpreter for nested FOR loops and

the object code was found to be about 48 times faster than the BASIC

Interpreter. fit this speed, some game program subroutines may reguire
waiting loops.

When compil ing, decimal ob ject code is printed out pn the screen,
however jumps to subroutines haue line #' = in piace of cbsolute
adresses wuntil the jump table is used. Also the compilation of POKES,
PEEKS, and USR(X) gensrates self-modifying code. Locetions to be
modified in this manner are filled with zeros (loock for 2 ad jacent
zeros) until the ob ject code is run. Dimensioned variables will generate
more o©b ject code and run slower than non-dimensiocned ucriab|es because
of the need to save and retrieve the status register, ACC ‘and
x-register when calculating the addresses. Thég'Should'be used only.
when their wuse actually simplifies the program and tﬁerebg “probably -
makes up for the difference.)

Just a word about errors upon compilation. 'Most errors are due to
the wuser violating the limited syntax of the Tiny Complfgr. My most
common errors are generated by the following incorrect code. Take a lock
at the available commands and see if you can identify the probiems. '

FORI=1T028:...... :NEXT
POKES7289, 3 v i]
IFA=BTHEN110 .

TINY COMPILER COMMANDS

Legal wvaricbles A thru Z (positive integers B to B4K) Dimensioned
variables A thru Z, each having subscripts B8 -127

Subscripts in dimensioned variables may be a variable or integer.
Dimeng}oned variables may be used anywhere except as a subscript;
however, they may not be wused on the left side of "= under
muitiplication and division. DIMZ(nnn),G(mmm) multiple DM
statements al locwed.

A ¥ nnn (where B <= nnn <{= B4K)

A =R

A B + C, A =B + nnn A =B OR C, A = B OR nnn

R =R/ + C, A=A + nnn A = B AND C, A = B AND nnn

AVM="B~='C; A=B - nnn

A = PEEK(B?}, A = PEEK(nnn)

POKE A,B POKE A,nnn (where B {(= nnn (= 255}

GOSUB nnn, GOTO nnn

A=D =% B, A=D % nnn B{=D{=255, B<{=B{=B6B4K, B<{=nnn<{=64K

A=B~-C, A =8B/ nnn, B{=C<{=128, B<{=B{=64K, @<{(=nnn<=128

IF A=number THEN GOTOC nnn

IF C=number THENGOSUBE nnn

IF D< >number THENGCTO nnn

IF E< >number THENGOSUB nnn

IF A=B THEN GOTO nnn,

IF AR=B THEN GOSUB nnn, RETURN

IF A<K>B THEN GOTO nnn, STOP

IF A< >B THEN GOSUB nnn, REM

IF A<KB THENGOTO nnn, =USR(X), Does not pass arguement,
use as call.

IF A<KB THEN GOSUB nnn,- END (Only one END statement per
: program, use to terminate compilation)

FOR I = A TO B, (up to 9 nested FOR loops)
FOR I = nnn TO B,

FOR I = A TO B STEP nnn (nnn + or -)

FOR I = PEEK(nnn)} TO B STEF mmm,

FOR I = PEEK(C) TO B STEP nnn,

NEXTX (X optional),

Objegifcode is relocatable, i.e. the code can be compiled for relpcation
to osher regions of RAM. Ob ject code must be moved before execution in
this case.

Multiple statements per line are OK except IF A = .. THEN GOSUB nnn
which must be located on the end of a line.

N

3%

4y
5)

612

)

8

9)

TINY COMPILER

INSTRUCTIONS
Load program (5.8K)
Type program to be compiled - lines B thru 18 (18 must be
an END %), The dompiler currently limits the
‘source program to 18 lines. RAdd a DIM statement

for the string variables L%, L28%, and L3% in Line 288 to

to increase the number of l|ines. ‘

Run the source'program usngthe BASIC interpreter for
checkout, Type "RUN".

To compile a program type “RUN 288°.

Beginning of Ob ject code should be agbout 1K above the top of
BASIC to give the compiler room to store deta. Leave

about 12 page,(128 bytes) for the compiler to store strings
from the top of memory. The compiler uses 89 string variable
bytes for each line compiled and 5 bytes for each GOSUB

or GOTO. Thus a typical program with 1B lines and

5 GOSUBS would use 115 bytes of string storage.

Uariable table - Only used after compilation, B2 locations
needed if 26 variables A-Z are used. If dimensioned
variables are used add 2 bytes for each subscript

(remember 8.

If you want to compile the program in one location ond later

move it to another location then answer "YES"™ or "Y" to the

gquestion "RELOCATE OBJECT CODE". Give decimal address as

answer to next gquestion.

During compilation Pl is checked for 5B (colen) or 8,

if it isn’t then the compiler is out of sync and will

give an error message. Most errors occur upon compilation

because the Tiny Compiler syntax is a subset of BASIC and the

programmer forgets and uses the complete BASIC interpreter

syntax. Usually the following diagnostics will cccur because

of this:

a) ERROR LINE #...

b) FC ERROR IN 12 (error on NEXT,‘usugally due to incorrect
FOR) F

After compilation type "Control - C" to exit to save the

Ob ject code, or hit shift to execute the Object code.

% Note only one END staotement allowed per program, use STOP for

interior termination.

Should you need more room for object code, you can selectively
remove parts of the compiler not needed. Use the following tables
to remove macro codes (such as multiply) thot are not needed.

Line #

12
14 -
28
44 -

la

48 -
224
272

288
2398

298 -

328 -
344 -
368 -
394 -
436 -
444 -
458 -
458 -
479 -
482 -
584 -

26
4@
144

228
278
286

296
508

326

342
366
3398
434
442
448
456
466
481
489
151%]%)

Tiny Compiler
General! Layout -

Descripticn
Poke Ob ject Code

Peek Source Code (Codes addresses for variables)

Setup Integer, error check

Poke ‘Instruction codes

(122 - 138 Decodes addresses for variables)
Initialization

MAIN LOOP

JUMP Calculations

Run Machine Code & Stop
Macro Codes

Organization of Macro Codes

A = %, check for +, -, %, 7/, PEEK, and USR(X),
addition and subtraction

EEK
Multiplication
Division

IF THEN

“FUSR(X)

GOSUB, GOTO

POKE

Self Mod. Code for POKE & PEEK & USR(X)
FOR

NEXT

DIMENSION

perform

VISR

Tiny Compiler -
.Machine Dependent Locations

Statement #

208

2864
286
288

212

288
292

438

Efficient use of memory is made by minimizing the

number @f |lines in the program. The DIM for the stiring
variables may be increased on machines with more memory
The current program needs about 1K between the BASIC

program and the Ob ject code.

Location of the Top of the BASIC program 123,124
Location of the beginning of BASIC program 121,122
Default Location of Objeét Code. In the current

configuration about 1K is needed between the top of the

BASIC program and the bottom of the Ob ject code.
Set default location of ob ject code.
Location of the VUariable taoble (B2 locations are

needed, the first ten of which are working locations,

folliowed by A, B, C, etc., each using two locations

in ‘word order’, LSB,MSB). The dimensicned variables

follow in the order they are dimensioned.

PEEK(57888) is used to detect shift keys for running

ob ject program.

LSB and MSB for USR(X) jump to subroutipe,
11,12

F = 11, LSB for USR(X)

*% Note Control C must be enabled so that the user can exit the

compiler and save the Ob ject code.

Detailed Description
of
Tiny Compiler

Line # Description

12 Poke machine code, increment location to be poked, M

14 Call peeking routine, check for non subscripted variables.

16 Set counter for variables (A=1888, B=288B8), read (

and value within (), set F for variable or integer.

18 If variable is within (), then add ASC of variable
e.g- A(B) would be 1866.

28 if variable is within (), then add value and negate.
e.g. A(18) would be -1810.

22 Peek BASIC source program, print token, ASC and lecation
peeked (Q), increment Q, do again if character is a
blank (32)

24 Check for end of line (B), set flag for end of line

28-38 Check for alpha character -

32 Indicate error line ¥ and stop

34 If not integer, then exit reading loop

36 Build a string of integers, peek source code, check for
integer; used for ossembling addresses, etc.

38 set starting equal to a null, check for integer, if string
is null set flag (F) equal to minus one indicating a
variable not an integer. 3B is the commocn entry point.
First character of string must be in P upon entry
otherwise a double read will occur.

48 Convert a string to number (line number of value of a

variable)

5

42
44
48

58
52

54
56
5B8-E4

66-68

78
72
74
76
78
gz
84
86
88
=15
g2
S4
96
98
180
182
184
186
188
lig
112
114
1186
118
128
122
124
126

128
138

132
134
136

138
14@

Calculate MSB and LSB for storage in 'object code; often
used in LDX ¥, LDA #

Get location of varnable in variable table, load X
register with MSB, and Accumulator with LSB.

Load accumulator immediate with LSB, load X register with
MSB.

LDY# 2

Get location in variable table, store accumulgcter in LSB,
and X register in MSB of variagble in table. Commands

are absolute indexed by Y.

INY

DEY

Sets up sign (S) as plus, minus, OR, AND. Sign is set as
cede for ADC, th¥%n checks for SBC(164), AND(168),
ORA(168). Pokes command and address. All commands are
absolute indexed with Y.

Performs CLC for ADC or SEC for SBC. Usual,y called
before 58 is called.

RTS

BPL

Find variable, Roll variable to left.

ROL -

ASL A

PHA

PLA

FPHP

PLP

DEX

Store Accumulator, absolute indeBed by Y

Store Accumulator inte vcriable table address

BEQ

Poke LSB and MSE

Load Accumulator from vaiabe tale address

Load Rccumulator, absolute indexed by Y

BCC

"BCS

BNE

LDA#

LDX#

XA

TAX

TAY

Compare variable table address to accumulator

Set Base addresses for regular variables A-Z ®
Load Y index register with variable table address (f- Z)
Get dimensioned variable offset, set base addresses
IF VUl is negative then access A(nnn) routine
Check for no dimension on subject variable.
Beginning of A(variable) routine. Save Status register
the ACC and X register on stack.
Load Y register with regular variable offset
Set base addr for regular varigble.
LDA with LSB of subscript, multiply by 2, put in Y
get X index register from stack
Get ACC ond status from stack, set base addr for
appropriate subscripted varicble & return.

Entrance for A(nnn), LDY # with subscr:pt, return
Pokes command, and LSB and MSB

A

6

142
144
146-148
158-154
208

282
264
286
208
212
214
216
218

rent ob ject
228

228

238
232

234
236

268

262
264

Pokes command, and variable table address

Pokes 2 zeros-used for filler on self mod code.

Check for fagilure to Dimension variable B.

Finds location of variable for ROL:(used in % and /)
During compilation the line # is stored in L$(), its
location in LZ2%().The location in the

ob ject code where a call to a subroutine occurs is stored
in L3%C), and N is the index for L3%(). Strings are used
to decrease storage requiréments.

title

Print Top of BASIC (source program and compiler) so that
the user can judge where to place object code and variable
table.

Source code pointer (Q) is initialized ot bottom of BASIC
workspace.

User chooses locat)on of object code.

Default set up for ob ject code location.

Save beginning locaticn of the cobject code (MM).
Initialize pointer for jumps (N}, lines (L3}, FOR (J),

relocate vector (R). Default location is set up for
variable table. o
Query user for object code relocation. If not "Y" assume

no relocation.

If relocation desired, read in address (R} an hag
location. -

Calculate max location in Variable table, increment
later as DIM s are encountered

Initialize pointers for base of possible dimensioned
variables to XX, ZZ
Read location of next BASIC line in RAM (M1), and current
line #.
Print line # and the locagtion in RAM to next be poked
with ob ject code. Increment counter for line (LJ). Add
4 to location of pointer in source code since |line 224
has already read 4 bytes.
Save string containing tine # and location.

If line # of next line is greater than 18

goto jump table.
Reset flag for end of line (C),read a character, do again
if end of line (C=21.
Go to "A =" routine if P = alphabetic character or

if P>3389 (A(var)) or if P8 (AC#FEE))

If P = 128 (END) then RTS and GOTO execution phase
Set X = 76 (JMP) for GOTO in line 268. If P=REM then
skip remainder of line and go to next line of BASIC.
¥Y=-1 if P =128 (FOR)

=-2 if P =138 (NEXT)
¥Y=-3 if P =133 (DIM)
Y=-4 if P =136 (GOTO)

Y=-5 if P =138 (IF)

Y=-6 if P =148 (GOSUB)
Y=-7
Y=-8

if P =141 or P =143 (RETURN, STOP)
if P =158 (POKE)

Go to subroutine indicated by ABS(Y)
PEEK next character

266
268

278
272
®

274-284

286

288
2388
282

Line #
294 - 236

298
388
382
384
386
308
318
312
314
316
318
328
322
326
328
338
332

334

336

- 324

If last cheracter was o colon (58) then cont to peek
If last character was not B then print it, go to error.

Set Q= next line, go read next |ine header (4 bytes).
Check to see if there aren’t any jump vectors, if not
go to shift detect & run (28B).

Subtract 1 from jump index (N).

Look thru variable table for line L%, poke L28% +
Relocation factor (R) into locatieon L3%.

Print # pages of object code, Top location of ob ject
code and print message.
Detect shift keys.

Clear variable table.

Print message set up USR(X).

Description

Run Ob ject code, and print variable table and steop.
Entry point for all A= commands. Save variable & check
For' =]

If P=PEEK gotoc peek routine.
If USR, goto USR routine.
Check for variable, if variable skip a line.
If integer Load ACC & X register # and store in
variable VUl location.
Check next character for +, -, %, 7, AND, OR, if not
one of these goto 286 after resetting Q for reread.

Save operand (S), save variable or integer U3 following

if operand = % then 344.

Check operand for division, transfer to division
routine.

Check flag (F) for variable. If variable skip next
line.

If integer, load ACC & X immediate with integer and
store into working location B,1.

Load second variagble VU2 into ACC register. Get

variable table address, do either CLC er SBC depending

on S, then either add or subtract depending on S.

Get variable table address for result (U4) & store ACC.
Add most significant bytes as above without CLC or SBC.

A = B, load B into ACC & X register. Store into A.
RETURN.
Entry for PEEK, check for "(".

Check for variable or integer if variable skip 2 lines.
Load Y with 8, load contents of address (LB & MB) into

ACC, Load X with zero.

Store into result variable space (U4), read another
token "3, return. ‘

Read °)" and check for correct syntax.

8

340

342
344

346

348

358

354

Set X=10 go to self-modifying code, X indicote
lines below current M that the STR will modify

% of

Load Accumulotor with absolute address poked as zeros

now which will be loaded by STA located ten leo
ear!lier-in code. 2
Store intc result location (U4).
Entry Point for multiplication prior to 344 A
had been reed. In case the multiplier was an
38 was called in V4, B in U2 and C in V3. S e
the token #% (185). MWhen this routine is called

b multiplier (VU2) is loaded in the accumulator,
lower ‘byte is used and it is put on the stack.
F is checked to see whether the multiplier is
variabble or an integer. If it is a variable
ACC & X register are loaded with the variable
are stored in locations B and 1 of the variabl
Skip next line.
If F is an integer then the Accumulator and X
are loaded with LSB and MSB respectively, and
stored in locations B and 1 of the variable ta
The Accumulator and X register with zerc. UWhi
|oaded into the result location V4. The muiti

pulled from the stack and the X index register

serves as a counter is loaded with 8.

- 366 The following code is poked:
LOOP CLC
ROL U4
ROL V4 + 1
ASL A
BCC NOC1 (33)
PHA

LDY U4 location
LDA XXZZ, Y

CLC

LDY £.3%}

AnC XXZZ, Y

LDY U4 location
STA XXZZ, ¥

INY
LDA xXZ2zZ, Y
LDY ¥#1

ADC XXzZZ, Y
LDY U4 location
INY
STA XXZZ2, Y
PLA

NOC1 DEX

cations

=B % C
integer
guals
, the
only the

a
then the
and they
e tagble.

register
they are
ble.

ch is
plier is

which

BNE L OOP

368 Entry point for Division. Prior to 368 , A =B 7 C,
where A is the guotient, B is the dividend, and C is
the divisor, had been read. In case the divisor was an
integer, 38 was colled and the integer stored in F
(MB and LB). A was stored in VU4, B in V2, an C in U3.
S equals the token "/°. MWhen this routine (368) is
called, F is checked to see whether the divisor was an
integer or variable; if.a variable, the ACC and X

¢ register are loaded immediate & next line skipped.
® < !
Line # Description
368 If the divisor is an integer then the ACC & X

register are loaded immediate with the LSB and MSB
respectively.

372 The divisor is used as an 8 bit ¥, soc the LSE is
transferred to the X register and the Accumulator
is loaded with 8. Then those values are stored at
location B, and 1 in the variable table. Location
® being the remainder and 1 being the divisor.

374 The dividend is loaded into the Accumulator and X
register and stored in the location of the qguotient
which is then used as a working register. The X
register is then loaded with 17 to serve as a
counter.

376 - 398 F is used as a working variable to set up the jump
to the start of the division routine. F is offset
by R in order to be relocatable. U4 is the address
of the quotiert, xxzz is the location of the bottom

of the variable table. The remainder of the
routine is :
JMP START :
LOOP LDA XXZZ, Y
SEC
INY
SBC xxzz, Y
BPL NREST
START CLC
JP MERGQ
NREST LDY #8
STA xxzz, Y
SEC
MERGGQ ROL U4
ROL V4+1
DEX

10

384

3386

398

488 % 482

424
485

<
498

412
414
416
418
428

422

424
426
428
43@

432 - 434

438
438
440

444
446

448

458

452

454

442

BEQ RTN

ROL RMDR

JMP LOOP

RTN

Entry point for IF THEN. Peek character, check
for alphabetic. Peek character, check for less
than () or equal (=), if not, indicate error.

If "less than®" then peek character for greater than
(>) if not go to "less than” code at 42Z8.

If F=-1 then Variable so continue to 416

If F=number then jump to patch at 416.

Go to "THEN" code at 428.

Set P =7, if U$ is an "=" then P = 18. Different
branching for "=" and “"not equals".

TXA, INY, compare MSB.

If VU4 is "less than" then BEQ and skip a line.

BNE

P = 3, go to 446 (GOTO,GOSUB routine).

Convert F to MSB+LSB, LDA #% LB LDX #$ MB

Fix PEEK counter and back to normal routine
Baginning of “"less than® portion of IF THEN macro.
Check alphabetic on second variaeble inte ACC and
X register.]

GOTO 428, load ACC and X register compare and

BCC 11.

BNE 12, compare.

BEQ 5, BCS 3, goto 446.

Check for "GOTO" or "GOSUB".

If not gosub or goto then error

Set GOTO (78) or GOSUB (32).

Entry for USR(X), PEEK "(X)", check for "3)".

L oad contents of 11 and 12.

Store contents into absoclute address of JSR @8,
USR(X) enters self-modifying code at 464.

Set x=32 for gosub

Entry te "GOSUB", "GOTO0", PEEK code, check for
legal address.

Poke JSR or JMP, store location in memory for
absoclute address, increment pointer (N), poke line

for temporary address, reset Q by 1, return.
Whenever 3B is called one more read will occur
than needed, reset upon exit is reguired.

Entry to Poke, check for alphabetic, check feor
comma, sv address of variable Vl.

Read integer or varicble. Skip a line if a
variabie.

POKE A,nnn. Save integer (V4) call self-modifying

— s

456
458

462

464

478
472

474

476
478
480
482
483
484
485
486
487
488

489
594

596

5398

EBB

466

code routine, so as to get the contents of variable
Ul and store it in the ob ject code as an address
following a STA command.

LDA with LSB, STA 88,Y, Reset Q by 1. Return.

Poke A,B. Entry to portion of poke macro where

value to be poked is contained in variable. GOSUB
462, load A and X with value to be poked, LDY #0,

STA B@,Y. Zerc's will be replaced by address upon
running. RETURN is achieved through line 144.
Entrance to self-modifying code for PEEK, POKE,USR(X).
Load AR and X offset by Y register.

STA: INY; TXA; STA MBLB,Y; Return. MBLE is calculated
from X, M and R, where X is relative delta from M to
the place in the object code to be modified, M is the
machine location in object code, and R is the
relocation factor.

Entrance to FOR Macro. Add one to nesting counter.
Peek wvariable and save as

U7C), use "A =" subroutine at 298, reduce Q by 1,
reread, check for *TO".

VB(J) is reentrance LOOP pointer, U%(J) is variable
for testing completion of FOR LOOP, Set step (T(J))
equal to 1, set sign VU4 as plus.

Check for "STEP" (1B2) if not then Decrement Q, reiurn
Check for minus, set U$ equal to 164 if winus.

Read step value, if negative step use 2's comp!ement
for step.

Entrance to NEXT macre. Check for alpha character
following NEXT.

Load ACC and X register with variable for testing
completion, BNE 1

TXA, INY, compare MSB.

BNE 3, JMP to address plus 2B.

Load ACC and X register with step, set sign to plus.
CLC, ADD sub ject variable VU7(J), store LSB back into
sub ject variable TXA, INY.

Add, STA MSB intc sub ject variable, JMP to

reentrance location of "FOR".

Subtract 1 from counter for nested FOR lcops.
Entrance for DIM statement. Read character, chack for
alpha. Save ASC-B4 in X as counter (A=1, B=2...)
Calculate and store M5B and LSB in XX(X) and ZZ(X)
respectively. Read # locations in Dimension.
Calculcte new top of Table (FM). If end of

command or end of line, then return.

1f not end of Dimension, recd character and continue.

12

A

NS WM e

S0
e
92

54
Sb
=8
&0
62
&4
&b
&8
70
74
76
78
82
84
86
ag’
QO

~
<

94

P&

8

100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
4 Ty

R
REM 8K ROM VERSION

EM TINY COMFILER V1.3 DAVID PITTS JAN 14,1982

=10:DIMA(10)

A(10)=1000
A(A)=A(10)+1
STOF

END
FOKEM, F: M=M+1: RETURN

GOSURZ2: IFFEEK (@) < »400RF< 650RF >0 THENRE TURN
VE=10003j (F-64) : GOSUE22: GOSUERZZ: GOSUR3E
IFF=—1THENVS=VS+P: GOSUR22: P=VS: RETURN
F=—(V5+F) : RETURN

P=FEEK (@) : 0=0+1: IFP=32THEN22

IFF=0THENCE2

RETURN

IF (F< &SANDF >0) OR (F *90ANDF< 999) THENS2

RETURN 4

FRINT: PRINT"ERROR LINE #":L%(L):END

YFF< 480RF »57 THENRE TURN
C$=CH+CHRS (P) : GOSUR2Z: GOTO34

Ce=""3:GOSUB34: IFC$=""THENF=~1: RETURN

F=VAL (C$)
ME=INT (F/FG) : LE=F-MEXFG: RETURN

GOSUR122: GOSURS4 : GOSURL00: GOSUR116: GOSUESS: GOSUR1L 00O : RETURN
GOSUE110: F=LE: GOSUE1Z: GOSUR112: P=ME: GOSUR12: RETURN
F=160:GOSUR12: RETURN

GOSUR122: GOSURS4 : GOSUES4: GOSUR1 14 : GOSUE94 : RETURN
P=200: GOSUER12: RETURN

F=13&: GOSUR1Z: RETURN

F=121: IFS=164THENF=249: GOT0O64

IFS=168THENF=57: GOTO64

IFS=149THENF=25

GOSUE142: RETURN

F=24: IFS=1&64THENF=54
GOSUR1Z2: RETURN

F=96: GOSUR12: RETURN
F=16: GOSUR12: RETURN
V1=V4:GOSUB1S0: F=F+ZZ+FG¥XX: GOSUR4Z: GOSUR76: RETURN
F=46: GOSUER140: RETURN
P=10:GOSURLZ: RETURN

F=72:GOSURL2: RETURN
F=104:GOSUR1Z2: RETURN
F=8: GOSUE12: RETURN

F=40:GOSUER12: RETURN

F=202: GOSUR12: RETURN
P=153: GOSUR12: RETURN
F=153: GOSUR142: RETURN
F=240:G60SUE1Z: RETURN

F=LE: GOSUR12: P=ME: GOSUR12: RETURN

F=185: GOSUE142: RETURN

F=185:GOSUR12: RETURN

F=144:G0SUR1Z: RETURN

P=176:GOSUER12: RETURN

F=208: GOSUE1Z: RETURN

F=169:GOSUE12: RETURN

F=162:GOSUR12: RETURN

P=138:G0OSUE12: RETURN

P=170:G0SUE12: RETURN

P=168: GOSUE12: RETURN

P=217:G0SUE142: RETURN

XX=XX(0):1ZZ=ZZ(O)

IFV1 >59ANDV1< 91 THENGOSURSO: F= (V1-60) x2: GOSUB12: RETURN
B=INT(AES (V1) /1000) s XX=XX(R) : ZZ=ZZ (R) : GOSUR146&
IFV1<OTHEN138

I IO L = (NI IO e NI 1 A s NI s NI IEE Yy D= U1 LY 1 O LYY D

136
138
140
142
144
1446
148
150
152
154
200
202
204
206
208
212
214
216
218

220

Lor Zow 14
L.‘_z

37
‘L
o272
Lo

28

4._.\’)

e
s uae® e

234
236
260
262
264
266
268
270
272
274

. 276

278
280
282
284
286
287
288
290
292
294
2946
298
200
302
304
J06
208
310
212
14
316
18
JI20
324

-
-t Ll

328

Oy

B R " dy i W TIFN ROV WV W e A WY T BRGNS A W R SR el ST S W W Ny e -

GOSURE4: GOSUE116: GOSUERB4: GOSURBB: XX=XX(R):ZZ=ZZ (B) : RETURN
GOSURSZ0: P=2¥% (ARS (V1) -B¥1000) : GOSUR12: RETURN *
GOSUR1Z: P=LR: GOSUR12: F=ME: GOSUR12: RETURN
GOSUR12:P=ZZ: GOSUR12: P=XX: GOSUER12: RETURN

P=0: GOSUR12: GOSUE12: RETURN

IFXX=XX{(Q)ANDZZ=ZZ (0O) THENFRINT"NDO DIM FOR";CHR$ (B+64):60TO3Z
RETURN
XX=XX(0):ZZ=ZZ (0) : IFV13>59ANDV1< 1 THENF=(V1-60) x2: RETURN
E=INT (ABRS (V1) /1000) : P=2% (ARS (V1) -BXx1000) : IFV1 >999THENF=FP-120
XX=XX(R):ZZ=7ZZ (R) : RETURN

DIMXX (26),Z2(26) : PG=1356

PRINT:FRINT: FRINT" TINY COMFILER 1.3":PRINT:PRINT

X=PEEK (123) +PG¥PEEK (124) ~S: PRINT"TOF OF BASIC FRGM= "3;X:PRINT
E=FEEK (121)+PG¥FEEK (122) : L=1: PRINT"FOR DEFAULT ENTER Q7"
INFUT"LOC(DEC) OF OEJ CODE{(7500 DEFAULT) "3M: IFM<XTHENM=7300
MM=M: INFUT"LOC OF VARIARLE TARLE (8000 DEFAULT) ":VT
J=0:N|l: L=0:L3$ (1) ="0" 1 R=0: IFVT<XTHENVT=8000
INFUT"RELOCATE OBJ CODE":;C%: IFASC(C$) < >*BPTHEN220
INFUT"DEC ADDR"3;R:R=R-M
F=VT:GOSUR42: XX=MB: ZZ=LR: FM=ZZ+FGXXX+62
FORX=0TO2&6: XX (X)=XX2ZZ(X)=ZZ:NEXT

M1=FEEK (Q) +FPGXFEEK (€+1) : X=FEEK (B+2) +FEEK (B+3) ¥FG
FRINT"LINE="3;X;"LOC=";M:L=L+1:0=0+4
LE(L)=CSTR$ (X)) : L2 (L)=8TR$ (M) : IFX>*10THENZ272
C=0:G0OSUR14: IFC=2THENZ30

IF (F>64ANDF<91) 0ORF *9220RF<OTHENGDSURZ98: GOTO2464
IFF=128THENGOSUR70: GOTOZ272

X=76: IFF=142THENO=M1: GOTO22

Y=(F:128)+ (F>129) +(F>132)+(F>X130) +(FX137)+(F>139) +(F>140)+(F>149)
ONARS (Y) GOSUR470,482,594,446,3%94,444,70,450

GOSUER14

X=FEEK (Q—-1) : IFX=58THENZ30

IFX<>OTHENFRINT"F1="3 X: GOTO3Z2

Q=M1:PRINT:GOTOZ24

FRINT"JUMP VECTORS":IFVAL (L3% (1)) <1THENZ86
N=N-1:FORY=1TON: C=VAL (L3% (Y)) : XX=FEEK (C) +PGXFEEK (C+1) : ZZ=0
FORX=1TOL:V2=VAL (L2% (X)) :V1=VAL (L% (X))
IFXX=VITHENZZ=VZ+R:FRINT"JUMFTO*;V1; "ADDR="3;ZZ

NEXT: IFZZ=0THENFRINT"NO ADDR FOR ";XX:G60T7T0284
MB=INT(ZZ/FG):LB=ZZ-MEXFG: FOKEC,LE: FOKEC+1.ME

NEXT

FRINT (M-MM) /FG; "FAGES" : FRINT"TOFP="3M

FRINT"SHIFT TO RUN, CNTRL C TO EXITY

X=FEEK (57088) : IFX< >250ANDX < >252THENZ88

FORX=VTTOFM: FOKEX, O: NEXT

PRINT"RUNNING": X=INT (MM/PG) : Y=MM-XXFG: POKEL1Z,X:FPOKEL1l,Y
X=USR{X) : FORX=10TO388STEF2: M=VT+X: Y=PEEK (M) : Q=FEEK (M+1)
FRINTCHR® (X/2+60) ; Y+FPGXQ: NEXT: STOF
GOSURZ8:V1=P:GOSUR14: IFP< >171THENS2

GOSUR14: IFF=187THENZ28

IFP=176THEN4Z6 -

GOSURZE8: IFF=—-1THENZIO8

GOSUR48: GOSUREZ2: RETURN

VZ2=F:V4=V1: 60SUER14: IFP<1630RF >172THEND=-1: GOTO326

S=F: G0OSUR14: GOSURS8: V3=F: IFS=165THENZ44

IFS=166THEN368

IFF=-1THENV8=F: GOTOZ18

V8=460: GOSUR48: V1=VR: GOSURSZ: O=0-1

V1i=V2: G0SUER44: V1=V8:V2=V8: GOSUBR122: GOSUR&LE: GOSUBRSE

V1i=V4: G0OSUR122: GOSURY4: GOSUEB114

V1=V2: 6GOSUR122: GOSURS4: GOSURS8

V1i=V4: GOSUR122: GOSURS4: GOSUERY4: GOSUR14: RETURN

V1=V2: G0SUR44:V1=V4: GDSUBSZ:GDSUBI4:RETURN

GOSUE14: IFF< >40THENZ
ROCIINT A AR e VA = u1-u1=p P)

334
I3b
340
J42
344
J46
348
350
IS4
IS56
358
362
364
I6b
368
I70
372
374
376
378
82
384
86
390
394
296
298
400
402
404
406
408
412
414
416
418
420

a0
ol

424
424
428
470
432
474
434
4738
440
447
444
444
448
450
452
454
454
458
440
452
444
466
470
472
474
47646
378

P=0:G0SUR12:V1=V4:GOSUBS2: GOSUE14: RETURN
GOSUR14: IFF< *41 THEN32 -
X=10: GOSUR462: GOSUBRS0: P=0: GOSUEB12: GOSUR102: GOSUER144

GOSUE112: P=0: GOSUER12: V1=V4: GOSUBS2: GOSUER14: RETURN
S=163:V1=V2: GOSUR44: GOSURBZ
IFF=-1THENV1=V3: GOSUR44:V1=60: 60SUBS2: GOSUR14: GOTO3ISO -
GOSUR48: V1=60: GOSURS2

F=0: GOSUR42: GOSUR48: V1=V4: GOSUBS2: GOSURB4: GOSUER1 12: P=8: GOSUER12
F=24: GOSUR12: GOSUR74: F=F+1:GOSUER42: GOSUR76: GOSUR78: GOSUR104
F=33:6G05UR12: GOSURBZ: V1=V4: GOSURIZZ: F=185: GOSUR142: F=24: GOSUER12
GOSURS0: P=0: GOSUR12: XX=XX(0) : ZZ=27 (0) : GOSURS8: V1=V4: GOSUR122
GOSUER?4: GOSURS4: GOSUR100: GOSURS0: P=1: GOSUR12: XX=XX(0) 1 ZZ=ZZ (Q)
GOSUR38: V1=V4: GOSUER122 '

GOSUES4 : GBSURY4 : GOSURB4 : GOSUEY0: GOSUR108: F=210: GOSUR12: RETURN
S=164: IFF=-1THENV1=VZ: GOSUR44: GOSUR14: GOTO372

GOSUER48

GOSURL16: GOSUR110: P=0: GOSUR1Z2: V1=60: GOSURS2

V1=V2: GOSUEB44: V1=V4: GOSURSZ2: GOSUB112: F=17: GOSUR1Z

F=M+R+15: GOSUR4Z2: F=76: GOSUR140:605URSO: F=0: GOSUR12
XX=XX(0):ZZ=7ZZ (0) : GOSUE100: GOSUR&L6: GOSURS4 : GOSURS8: GOSUB72: F=4
GOSUR12: F=24:G0SUR1Z2: F=M+R+%: GOSUR42: F=76: GOSUR140: GOSUERSO
F=0: GOSUR12: XX=XX(0):ZZ=2Z (0Q) : GOSURY4: GOSUR&LL: GOSUR74: F=F+1
GOSUR4Z: GOSUR42: GOSUR76: GOSURC: GOSURP6: P=6: GOSUR12: P=46
XX=XX(0)22Z=72Z(0) :GOSUR142: F=M+R-34: GOSUR42: F=76: GOSUER140: RETURN
GOSUR14: GOSURZ28: V1=F: GOSUR14: IFF >*1720RF< 171 THENZZ2

V4=F: IFP=172THENGOSUR14: IFP< »170THEN420 -
VZ=V1:605UR14: V1=F:GOSUE3B: IFF<*—1THEN416é&

GOSUR44

V1=VZ: G08UR122: GOSURI20: GOSUR10B

GOsSUR428

F=7: IFV4=171THENF=10

GOSUER12: GOSUE1 14: GOSURS4: GOSUR1Z0: IFV4=172THENGOSUR?46: GOTO414
GOSUER108

F=3: 6G08UR1Z2: GOTO446

GOSUR4Z: F=169: GOSUR12: P=LEB: GOSUR12: F=162: GOSUER1Z2

F=MR: GOSUR1Z2: 0=0-1:60T0402

GOSUERZB: V2=F: G0SUR12Z: GOSUR100: GDSURB1 16: GOSURS4

GOSUR428: GOSUR100: V1=V2: GOSUR12%Z: GOSURS4: GOSUR120: GOSUER104: F=11
GOSUR1Z: GOSUR108: P=12: GOSUR1Z: GOSUR1 14: GOSURS6: GOSUR1 20
GOSUER6: F=5: GOSUR1Z2: GOSUR106: F=3: GOSUR12: GOTO446
GOSUR14: IFF< *160THENIZ

GOSUER14: IFF<>136ANDP< »1 40THENZZ

X=76: IFF=140THENX=32

RETURN

GOSUR14: GOSUR14: GOSUR14: IFF< *41THENZ2

GOSUER14: GOSURS0: P=1:60SUR12: GOSUR102: F=11:G0SUR42: GOSURY8
GOSUE116: GOSURS6: GOSUR102: GOSUERYB: X=8: GOSUR464: F=32: GOSUR12
GOSUR144: RETURN

X=32

GOSUER14: GOSURZB: IFF< 10RF *10THENZ2
F=X:GOSUE12:L.3% (N) =8TR$ (M) : N=N+1: GOSUER98: @=0-1: RETURN
GOSUE14: GOSURZ8: V1i=F:GOSUER14: IFF< *44THEN32

GOSUER14: GOSURZAB: IFF=—1THEN4S58

V4=| R: X=14: GOSUR4462: GOSURS0: F=0:605UR12

LE=V4:MR=0: GOSUER48: GOSUR92: GOSUE144: Q=0-1: RETURN
X=21:V2=P:60SUR462: V1=V2: GOSUER44: GOSURSO: F=0: GOSUE12

GOSUR?2: 6070144

GOSUER44

GOSURSO: P=0: GOSUR12: GOSUR?2: F=M+X+R: GOSUE42

GOSUE98: GOSUERS4: GOSUR114: GOSURY2: GOSURY8: RETURN

J=J+1

GOSUR14:V7 (J)=F:GOSUR298: O=0-1:505UE14: IFP< >*157THEN32

V6 (J)=M-1:6G0SUER14:V5(J)=P:60SUB14:T(J)=1:V4=163

IFF< >162THENG=0-1: RETURN

GOSILIE14: IFF=1484THENVA=F:: GOSUR1 4

badae i

481
ag2
48%
484
485
486
487
488
489
594
596
598
600

b i il o i e AU L MR b e il e - e i s i iRk Cadia e el TRt Sy Ve S T — NI RN S NP

RETURN

GOSUE14: IFF<&S0RF >0THENG=Q-1

V1i=V7(J) : GOSUR44:V1=V5(J) : GOSUR122: GOSUER120: GOSUE108
P=10:G05UR1Z: GOSUEK114: GOSURS4: GOSUR120

GOSUE108: P=3: GOSUR12: F=76: GOSUB12: F=M+26+R: GOSUB42
GOSUE?8B: F=T (J) : GOSUR42: GOSUR48:5=163:V1=V7(J)
GOSUER122: GOSUR&S: GOSURSE: GOSUEY4: GOSURL 14: GOSURS4
GOSURS8: GOSURY4: F=76: GOSUR12: F=Vé6 (J) +1+R: GOSUR42: GOSURS8
J=J-1: RETURN

GOSURZ2Z: GOSURZB8: X=F-64: GOSURZZ

F=FM: GOSUR4Z2: XX (X)=ME: ZZ (X)=LEB: GOSUR22: GOSUR3I8: GOSUR4(
FM=2%F+FM: IFFEEK (&) =EBORFEEF () =0THENRETURN
GDSUBEE:BET0594 ’

Additions to Tiny Compliler

SAVE stetement
SAVE nl,n2,n3.ee
©sge SAVE 32,0,253

Description: “Inserts the listed values directly into the compiled code,

Line Description

%
9139-Intercepts a SAVE token (Dec., 148) and goes to line 10000
10000-Translate a number from the line.
10005«If the character was a comma, get another line
10010-If the phmbscter is a ending null, or a colon, go to the next line
10015~If.nvne of the above, call an error
17020-Put into the compiled code the LSB of the number. Get another number,
Werning: Multiple Statement lines are not allowed with SAVE statements,

Hexadecimal constants

e.g. $23, $FE, $A9

Description: Any number preceeded by a dollar sign ('%') will be translsted
as & hexadecimal constant.

Line Description

. 8045~Intercept dollar signs and call the routine at 9670 &B translate to dec-
imal if necessary.

8047-The line normslly at 8045 for normal decimal numbers.

9001~-H% is used in the hexadecimal to decimal translation routine.

9670~Set the result (F) to O,

9673=Get a cheracter and find it's location in Hg.

9675-If not found, return.

9680-~Multiply the result so far by 16, adding the position=-1 from Hp. This
does the actual hex-to-dec conversion, Then loop back to 9673 for more
characters.,

